Answer:
albert einsteinssssssssssssssssssssssssss
Explanation:
Answer:
In my opinion the unstoppable object will hit the unmovable object and stop but the wheels will still be rolling and trying to move but can't.
<h3>Hope this helps.</h3><h3>Good luck ✅.</h3>
Answer:
the speed of the tip of a blade 10 s after the fan is turned off is 16.889 m/s.
Explanation:
Given;
diameter of the ceiling fan, d = 90 cm = 0.9 m
angular speed of the fan, ω = 64 rpm
time taken for the fan to stop, t = 28 s
The distance traveled by the ceiling fan when it comes to a stop is calculated as;

The speed of the tip of a blade 10 s after the fan is turned off is calculated as;

Therefore, the speed of the tip of a blade 10 s after the fan is turned off is 16.889 m/s.
Answer:
The answer cannot be determined.
Explanation:
The energy of the diver when he hits the pool will be equal to its potential energy
, and for the temperature of the pool to rise up, this energy has to be converted into the heat energy of the pool.
The change in temperature
then will be

Where m is the mass of water in the pool, c is the specific heat capacity of water, and
is the added heat which in this case is the energy of the diver.
Since we do not know the mass of the water in the pool, we cannot make this calculation.
The concept needed to solve this problem is average power dissipated by a wave on a string. This expression ca be defined as

Here,
= Linear mass density of the string
Angular frequency of the wave on the string
A = Amplitude of the wave
v = Speed of the wave
At the same time each of this terms have its own definition, i.e,
Here T is the Period
For the linear mass density we have that

And the angular frequency can be written as

Replacing this terms and the first equation we have that



PART A ) Replacing our values here we have that


PART B) The new amplitude A' that is half ot the wavelength of the wave is


Replacing at the equation of power we have that

