Given:
w = z(t)= γ − β*t^2
Differentiating both sides with respect to t, we get:
α = z(t) = -2βt
Given: <span> γ = 5.35 rad/s and β = 0.810 rad/s3
</span>
so, For t = 3 sec,
angular acceleration = -2 * 0.810 * 3 = <span>-4.86</span>
Yes, because cell phones use scientific structure to build.
Answer:
5.65 times
Explanation:
60 db sound is equal to 60 phons sound when frequency is kept at 1000Hz.
But when the frequency of sound is changed to 100 Hz , according to equal loudness curves , the loudness level on phon scale will be 35 phons.
A decrease of 10 phon on phon- scale makes sound 2 times less loud
Therefore a decrease of 25 phons will make loudness less intense by a factor equal to 2²°⁵ or 5.65 less intense . Therefore intensity at 100 Hz
must be increased 5.65 times so that its intensity matches intensity of 60 dB sound at 1000 Hz frequency.
Given the mass of R-134a m = 300kg; Volume of the container V = 9 cu. meter; Temperature of R-134a T = 10 degrees Celsius;
Formula of specific volume : v = V / m = 9 / 300 = 0.03 cu. m / kg.
At T = 10 degrees Celsius from saturated R-134a tables, vf = 0.0007930 cu. m /kg; vg = 0.049403 cu. m/kg. We know v = vf + x (vg - vf), so 0.03 = 0.0007930 + x (0.049403 - 0.0007930), which makes x = 0.601.
Specific enthalpy of R-134a in the container is h = hf + x*hfg = 65.43 + (0.601 * 190.73). Answer is 180.0587 kJ/kg