Answer: Direction
Explanation: A vector is a geometrical representation of physical quantity. It has a particular direction with a specific magnitude. In the geometry of space whether it is two dimensional or three dimensional the vector quantity has a specific direction. Such as a stone is thrown with a velocity in a particular direction.
The path of the stone in three-dimension shows its direction and speed is its magnitude.
Hence, the velocity of stone has two property magnitude mentioned as speed and particular direction. On writing the mathematical expressions for vectors, it is denoted by arrow mark on its top as shown below.
"If students spend more time reading on their own, their ELA grades will increase, because they will have more practice analyzing what they read," because the first and third are simply opinions, music may be cool to some but not to everyone and not everyone prefers chocolate cookies.
Elements are arranged from left to right and top to bottom in order of increasing atomic number.:)
There are
two things that you should remember while dealing with the "Lever Mechanical Advantage" problems:
1) The Effort Arm;
2) The Resistance Arm.
Some books label the Effort Arm as in-lever arm and the Resistance Arm as out-lever arm. (Physics Jargon that you need to remember in order to solve problems)
The Effort Arm is that "part" of the lever where the force can be applied. The Resistance Arm is where some mass is placed. In the diagram, as you can see, the mass is placed on one arm of the lever. Therefore, it is the Resistance Arm.
Now the formula for the "Mechanical Advantage(MA)" is:

Where

is the length of the Effort Arm(the subscript "e" stands for Effort), and

stands for the length of the Resistance Arm(here "r" stands for Resistance).
Plug in the values:

= 15m.

= 7m.
Therefore,

/

= 15/7 =
2.143 = MAThe correct answer is
option C(2.14).
-i
Answer:
Q1 = 7.25*10^(-16) C
Explanation:
We are given;
electric field strength = (1 x 10^5 N/C
drag force (F) = 7.25 x 10^(-11) N
The question says it's moving with constant velocity. This means that he particle is in equilibrium and not accelerating.
Columbs law force of attraction or repulsion between two charges is given as;
F=(KQ1Q2)/r²
Now, electric field strength is given as the formula;(K*Q2)/r², thus plugging the relevant values gives us;
7.25 x 10^(-11) N= (1 x 10^(5) N/C)Q1 Q1 = 7.25 x 10^(-11) /(1 x 10^(5))
Q1 = 7.25*10^(-16) C