1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
frozen [14]
3 years ago
7

A ball is thrown upward. At a height of 10 meters above the ground, the ball has a potential energy of 50 joules (with the poten

tial energy equal to zero at ground level) and is moving upward with a kinetic energy of 50 joules. Air friction is negligible. The maximum height reached by the ball is most nearly_________.
Physics
1 answer:
lions [1.4K]3 years ago
5 0

Answer:

 h = 20 m

Explanation:

given.

height, h = 10 m

Potential energy at 10 m = 50 J

Kinetic energy at 10 m = 50 J

maximum height the ball will reach, H = ?

Total energy of the system

T E = 50 J + 50 J

T E = 100 J

now,

A h = 10 m

P E = m g h

50 = m g x 10

mg = 5 ..............(1)

at the top most Point the only Potential energy will be acting on the body.

now, TE = Potential energy

 100 = m g h

5 h = 100

 h = 20 m

hence, the maximum height reached by the ball is equal to 20 m.

You might be interested in
Six baseball throws are shown below. In each case the baseball is thrown at the same initial speed and from the same height h ab
Assoli18 [71]

Answer:

EXplained

Explanation:

from conservation of energy

change in potential energy = gain in kinetic energy

so as all he balls are throws from the same height thus the change in potential energy is the same for all the balls thus the gain in kinetic energy is the same for all the balls and as they have the same initial velocity thus the final velocity is the same for all the balls.

6 0
3 years ago
Read 2 more answers
Can you please answer these ASAP!
SVEN [57.7K]

Answer:

Let's explain this briefly.

Suppose that we have a piece of ice (this is, solid water) now we give energy to the piece of ice, so the temperature of the ice increases. There is a point where the piece of ice will start a change of phase, at this point the temperature of the ice stops increasing because all the energy we give to the ice is used in the change of phase.

Once we have a complete change of phase, the temperature can increase again, and now we will have liquid water.

If we keep increasing the temperature we will see this happen again, when we have the transition from liquid to gas.

(and a similar thing happen when we have a material in a given phase and we remove heat from the material).

In the images we can see the different changes of phase of water.

1) In the first image we can see the circle in a part where the temperature is constant, so the temperature does not change in this part, which means that there is a change of phase happening.

2) Here we have the circle in a diagonal line, so here the temperature is changing, meaning that we have an increase of temperature in this region.

3) Here we want to know what the x-axis represents, this should rerpesent the energy that is being given to the material (so in some parts we see that the temperature increases and in other parts we see that the material changes of phase)

Then here the correct option is heat over time.

4) The freezing point is the temperature in which the change of phase from liquid to solid happens (or solid to liquid).

In the graph we can see that this change of phase happens at the temperature T = -210°C

Then the correct option is -210°C (The last option)

4 0
2 years ago
Two astronauts, each with a mass of 50 kg, are connected by a 7 m massless rope. Initially they are rotating around their center
kiruha [24]

Answer:

The angular  velocity is w_f =  1.531 \ rad/ s

Explanation:

From the question we are told that

     The mass of each astronauts is  m =  50 \ kg

      The initial  distance between the two  astronauts  d_i  =  7 \  m

Generally the radius is mathematically represented as r_i  =  \frac{d_i}{2} = \frac{7}{2}  =  3.5 \  m

      The initial  angular velocity is  w_1 = 0.5 \  rad /s

       The  distance between the two astronauts after the rope is pulled is d_f =  4 \  m

Generally the radius is mathematically represented as r_f  =  \frac{d_f}{2} = \frac{4}{2}  =  2\  m

Generally from the law of angular momentum conservation we have that

           I_{k_1} w_{k_1}+ I_{p_1} w_{p_1} = I_{k_2} w_{k_2}+ I_{p_2} w_{p_2}

Here I_{k_1 } is the initial moment of inertia of the first astronauts which is equal to I_{p_1} the initial moment of inertia of the second astronauts  So

      I_{k_1} = I_{p_1 } =  m *  r_i^2

Also   w_{k_1 } is the initial angular velocity of the first astronauts which is equal to w_{p_1} the initial angular velocity of the second astronauts  So

      w_{k_1} =w_{p_1 } = w_1

Here I_{k_2 } is the final moment of inertia of the first astronauts which is equal to I_{p_2} the final moment of inertia of the second astronauts  So

      I_{k_2} = I_{p_2} =  m *  r_f^2

Also   w_{k_2 } is the final angular velocity of the first astronauts which is equal to w_{p_2} the  final angular velocity of the second astronauts  So

      w_{k_2} =w_{p_2 } = w_2

So

      mr_i^2 w_1 + mr_i^2 w_1 = mr_f^2 w_2 + mr_f^2 w_2

=>   2 mr_i^2 w_1 = 2 mr_f^2 w_2

=>   w_f =  \frac{2 * m * r_i^2 w_1}{2 * m *  r_f^2 }

=>    w_f =  \frac{3.5^2 *  0.5}{  2^2 }

=>   w_f =  1.531 \ rad/ s

       

3 0
3 years ago
A small sphere with mass mcarries a positive chargeqand is attached to one end of a silk fiber of lengthL. The other end of the
Aleksandr-060686 [28]

Answer:

(a):  The magnitude of the electric force on the small sphere = \dfrac{q\sigma}{2\epsilon_o}.

(b): Shown below.

Explanation:

<u>Given:</u>

  • m = mass of the small sphere.
  • q = charge on the small sphere.
  • L = length of the silk fiber.
  • \sigma = surface charge density of the large vertical insulating sheet.

<h2>(a):</h2>

When the dimensions of the sheet is much larger than the distance between the charge and the sheet, then, according to Gauss' law of electrostatics, the electric field experienced by the particle due to the sheet is given as:

\rm E = \dfrac{\sigma}{2\epsilon_o}.

<em>where,</em>

\epsilon_o is the electrical permittivity of the free space.

The electric field at a point is defined as the amount of electric force experienced by a unit positive test charge, placed at that point. The magnitude electric field at a point and the magnitude of the electric force on a charge q placed at that point are related as:

\rm F_e=qE.

Thus, the magnitude of the electric force on the small sphere is given by

\rm F_e = q\times \dfrac{\sigma }{2\epsilon_o}=\dfrac{q\sigma}{2\epsilon_o}.

The sheet and the small sphere both are positively charged, therefore, the electric force between these two is repulsive, which means, the direction of the electric force on the sphere is away from the sheet along the line which is perepndicular to the sheet and joining the sphere.

<h2>(b):</h2>

When the sphere is in equilibrium, the tension in the fiber is given by the resultant of the weight of the sphere and the electric force experienced by it as shown in the figure attached below.

According to the fig.,

\rm \tan \theta = \dfrac{F_e}{W}.

<em>where,</em>

  • \rm F_e = electric force on the sphere, acting along left.
  • \rm W = weight of the sphere, acting vertically downwards.

<em />

\rm F_e = \dfrac{q\sigma}{2\epsilon_o}\\\\W=mg\\\\Therefore,\\\\\tan\theta = \dfrac{\dfrac{q\sigma}{2\epsilon_o}}{mg}=\dfrac{q\sigma}{2mg\epsilon_o}.\\\Rightarrow \theta=\tan^{-1}\left ( \dfrac{q\sigma}{2mg\epsilon_o}\right ) .

g is the acceleration due to gravity.

6 0
3 years ago
Why does the moon cycle from new moon to full moon?
devlian [24]
It depends on where the sun is hitting the moon in relation to the earth
4 0
3 years ago
Other questions:
  • Bright white shadings on infrared images indicate cloud tops that have relatively ________ temperatures
    10·1 answer
  • A magnetic field of 37.2 t has been achieved at the mit francis bitter national magnetic laboratory. Find the current needed to
    7·1 answer
  • 10. According to Newton's First Lawy , if a box is pushed with no external resistance, what will the action of the box be ?
    8·2 answers
  • Which moon of uranus has the greatest variety of landforms of any body yet examined?
    10·2 answers
  • An osprey's call is a distinct whistle at 2200 Hz. An osprey calls while diving at you, to drive you away from her nest. You hea
    15·1 answer
  • On the Moon, the acceleration due to the effect of gravity is only about 1/6 of that on Earth. An astronaut whose weight on Eart
    12·1 answer
  • If force remains constant and acceleration decreases what must happen to the mass
    15·1 answer
  • Pls help me pls I’ll be glad
    11·1 answer
  • A chocolate brownie has a volume of 360cubic centimeters and a mass of 270grams. Calculate its density.
    11·1 answer
  • When there is more speed does that mean there is more or less force?
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!