Answer:
AC= 6.3 units (nearest tenth)
BC= 2.8 units (nearest tenth)
∠C= 64°
Step-by-step explanation:
Please see attached picture for full solution.
T(d)= 2(d-1) + 30
T(6)= 2(6-1) + 30
= 40 mins
Answer:
The solution of the inequation
is
.
Step-by-step explanation:
First of all, let simplify and factorize the resulting polynomial:



Roots are found by Quadratic Formula:
![r_{1,2} = \frac{\left[-\left(-\frac{11}{6}\right)\pm \sqrt{\left(-\frac{11}{6} \right)^{2}-4\cdot (1)\cdot \left(-\frac{10}{6} \right)} \right]}{2\cdot (1)}](https://tex.z-dn.net/?f=r_%7B1%2C2%7D%20%3D%20%5Cfrac%7B%5Cleft%5B-%5Cleft%28-%5Cfrac%7B11%7D%7B6%7D%5Cright%29%5Cpm%20%5Csqrt%7B%5Cleft%28-%5Cfrac%7B11%7D%7B6%7D%20%5Cright%29%5E%7B2%7D-4%5Ccdot%20%281%29%5Ccdot%20%5Cleft%28-%5Cfrac%7B10%7D%7B6%7D%20%5Cright%29%7D%20%5Cright%5D%7D%7B2%5Ccdot%20%281%29%7D)
and 
Then, the factorized form of the inequation is:

By Real Algebra, there are two condition that fulfill the inequation:
a) 


b) 


The solution of the inequation
is
.
There 7 blocks of hundreds which means each such block is equivalent to 100.
There are 5 blocks of tens, which means each such block is equivalent to 10.
There are 8 blocks of ones, which means each such block is equivalent to 1.
The total of these blocks will be = 7(100) + 5(10) + 8(10) = 758
We can make several two 3-digit numbers from these blocks. An example is listed below:
Example:
Using 3 hundred block, 2 tens blocks and 4 ones block to make one number and remaining blocks to make the other number. The remaining blocks will be 4 hundred blocks, 3 tens blocks and 4 ones blocks
The two numbers we will make in this case are:
1st number = 3(100) + 2(10) + 4(1) = 324
2nd number = 4(100) + 3(10) + 4(1) = 434
The sum of these two numbers is = 324 + 434 = 758
i.e. equal to the original sum of all blocks.
This way changing the number of blocks in each place value, different 3 digit numbers can be generated.