Answer: B yeah I'm pretty sure
Answer:
B
Explanation:
A is not the answer. Although the statement is accurate in regards to gases, it does not explain why liquids and gases can flow.
B is the answer. Solids are in fixed structures. When you apply heat or pressure, these structures are broken apart and allowed to move freely.
C is not the answer. This is inaccurate. Changing the phase of a substance does not change the size of the particle.
D is not the answer. The opposite of this statement is true. The attractive forces between particles in a solid allow the substance to hold its structure. When you apply heat or pressure, the attractive forces are overpowered and the structure is broken.
Answer:
See explanation below
Explanation:
The question is incomplete. However, here's the missing part of the question:
<em>"For the following reaction, Kp = 0.455 at 945 °C: </em>
<em>C(s) + 2H2(g) <--> CH4(g). </em>
<em>At equilibrium the partial pressure of H2 is 1.78 atm. What is the equilibrium partial pressure of CH4(g)?"</em>
With these question, and knowing the value of equilibrium of this reaction we can calculate the partial pressure of CH4.
The expression of Kp for this reaction is:
Kp = PpCH4 / (PpH2)²
We know the value of Kp and pressure of hydrogen, so, let's solve for CH4:
PpCH4 = Kp * PpH2²
*: You should note that we don't use Carbon here, because it's solid, and solids and liquids do not contribute in the expression of equilibrium, mainly because their concentration is constant and near to 1.
Now solving for PpCH4:
PpCH4 = 0.455 * (1.78)²
<u><em>PpCH4 = 1.44 atm</em></u>
5.732 grams of AgCl is formed when 0.200 L of 0.200 M AGNO3 reacts with an excess of CaCl2.
Explanation:
The balanced equation:
2 AgNO3(aq) + CaCl2(aq) -----> 2 AgCl(s) + Ca(NO3)2(aq)
data given:
volume of AgNO3 = 0.2 L
molarity of AgNO3 = 0.200 M
atomic weight of AgCl= 143.32 gram/mole
from the formula, number of moles can be calculated
Molarity = 
number of moles of AgNO3 = 0.04
From the reaction:
2 moles of AgNO3 reacts to form 2 moles of AgCl
0.04 moles of AgNO3 reacts to form x mole of AgCl
= 
= 0.04 moles of AgCl is formed
mass of AgCl formed is calculated by multiplying number of moles with atomic mass of AgCl
mass of AgCl = 0.04 x 143.32
= 5.732 grams of AgCl is formed.
hope it helps you .............