They move in a waves motion
Answer: 1. walking across a carpet and touching a metal door handle 2. pulling your hat off and having your hair stand on end.
Explanation
:)
Answer:
it is sublimation because There are three ways heat is transferred into and through the atmosphere:
radiation.
conduction.
convection.
Explanation:
please mark me as brainliest as you wrote over there
<h2>QUESTION:- </h2>
➜what is kepler's law??

Kepler gave the three laws or theorems of motion of the orbitals bodies

This law state that the celestial bodies revolves around the stars in elliptical orbit and star as a single focus.
Example :- Earth revolves around the Sun as assuming it as single focus
This also shows that earth revolves around the sun in elliptical orbit.

Area covered by the planet is equal in equal duration of time irrespective of the position of the planet.
It also states that Angular momentum is constant
As Angular momentum is constant it means areal velocity is also constant.

where:-
A is the area.
T is the time.
L is the angular momentum.
M is the mass of the body.

square of the time of the revolution is directly proportional to the cube of the distance between the planet and star in Astronomical unit.

where:-
T = time of revolution
a is the distance between the planet and star.

Answer:
K_a = 8,111 J
Explanation:
This is a collision exercise, let's define the system as formed by the two particles A and B, in this way the forces during the collision are internal and the moment is conserved
initial instant. Just before dropping the particles
p₀ = 0
final moment
p_f = m_a v_a + m_b v_b
p₀ = p_f
0 = m_a v_a + m_b v_b
tells us that
m_a = 8 m_b
0 = 8 m_b v_a + m_b v_b
v_b = - 8 v_a (1)
indicate that the transfer is complete, therefore the kinematic energy is conserved
starting point
Em₀ = K₀ = 73 J
final point. After separating the body
Em_f = K_f = ½ m_a v_a² + ½ m_b v_b²
K₀ = K_f
73 = ½ m_a (v_a² + v_b² / 8)
we substitute equation 1
73 = ½ m_a (v_a² + 8² v_a² / 8)
73 = ½ m_a (9 v_a²)
73/9 = ½ m_a (v_a²) = K_a
K_a = 8,111 J