Answer:
2.55 × 10³ J =2.55 kJ
Explanation:
Specific heat capacity of ice = 37.8 J / mol °C
Specific heat capacity of water = 76.0 J/ mol °C
Ice at -12 °C is converted to ice at 0 °C by absorbing heat Q₁
Ice at 0°C melts to water at 0 °C. Let Heat absorbed during this phase change be Q₂ .
Let heat absorbed to raise the temperature of water from 0 C to 24°C be Q₃ .
Total heat = Q = Q₁ + Q₂ + Q₃
Q₁ = (37.8 j/mol C )(5.53 g /18.01532 g/ mol )( 0-(-12)) = 139.23749 j
Q₂ =(5.53 g/18.01532 g H₂O / mol ) (6.02 x10³ j) = 1847.905 j
Q₃ = (76 j/mol C) ( (5.53 g/18.01532 g H₂O / mol )(24-0) = 559.8968 j
Total Heat required = Q = 139.23749 j + 1847.905 j + 559.8968 j
= 2547.039 j = 2.55 × 10³ J =2.55 kJ
Answer:
Second order line appears at 43.33° Bragg angle.
Explanation:
When there is a scattering of x- rays from the crystal lattice and interference occurs, this is known as Bragg's law.
The Bragg's diffraction equation is :
.....(1)
Here n is order of constructive interference, λ is wavelength of x-ray beam, d is the inter spacing distance of lattice and θ is the Bragg's angle or scattering angle.
Given :
Wavelength, λ = 1.4 x 10⁻¹⁰ m
Bragg's angle, θ = 20°
Order of constructive interference, n =1
Substitute these value in equation (1).

d = 2.04 x 10⁻¹⁰ m
For second order constructive interference, let the Bragg's angle be θ₁.
Substitute 2 for n, 2.04 x 10⁻¹⁰ m for d and 1.4 x 10⁻¹⁰ m for λ in equation (1).


<em>θ₁ </em>= 43.33°
Hi hi I hope you know that you have a great time jaha
Answer:
Sorry I don't understand this language I'm sorry
The phenomena<span> of </span>atmospheric<span> electricity are of three kinds. ..... In the Earth-</span>ionosphere cavity, the electric field<span> and conduction current in the lower </span>atmosphere<span> </span>