A. Average speed is weighted mean (1 × 2 + 2 × 3 + 3 × 5 + 4 × 7 + 3 × 9 + 2 × 12.5)/15 = (2 + 6 + 15 + 28 + 27 + 25)/15 = 103/15 = 6.867 b. RMS is square root of 1/15 times sum of squares of speeds Sum of squares is 4 + 9 + 9 + 25 + 25 + 25 + 49 + 49 + 49 + 49 + 81 + 81 + 81 +156.25 + 156.25 = 848.5
c. RMS speed = √(848.5/15) = 7.521
Most likely the speed is the peak in the speed distribution, which is 7.
this is an equation that you need to solve for motional emf. motional emf=vBL, where v is velocity in meters/second, B is magnetic field in Teslas and L is length or distance the rails are apart from each other. when we plug everything into the formula given above, we get: motional emf=5m/s*0.80T*0.20m. solving all this we get 0.8 volts. pretty sure that since they are giving you the direction of the field, they want to know which way the current will flow . since the conductor is moving from left to right the area of the field is increasing which means magnetic flux is increasing as Ф(magnetic flux)=B(magnetic field)*A(area)*cosФ(little phi is the angle to the normal. in this case little fee is 0 degrees so the cosФ doesn't matter). so ↑Ф=B↑A. if magnetic flux is increasing, the induced magnetic field is in the opposite direction as the original magnetic field meaning the induced magnetic field will be out of the page. using the right hand rule which says that if the field is in to the page, the current should go clockwise and if the field is out of the page, the current is counterclockwise so that means that the current should be going counter clockwise since the induced field is going out of the screen. the top of the conducting wire will have its current go to the left and the bottom of the conducting wire will have the current go to the right.
Answer:
W = 3.12 J
Explanation:
Given the volume is 1.50*10^-3 m^3 and the coefficient of volume for aluminum is β = 69*10^-6 (°C)^-1. The temperature rises from 22°C to 320°C. The difference in temperature is 320 - 22 = 298°C, so ΔT = 298°C. To reiterate our known values we have:
β = 69*10^-6 (°C)^-1 V = 1.50*10^-3 m^3 ΔT = 298°C
So we can plug into the thermal expansion equation to find ΔV which is how much the volume expanded (I'll use d instead of Δ because of format):

So ΔV = 3.0843*10^-5 m^3
Now we have ΔV, next we have to solve for the work done by thermal expansion. The air pressure is 1.01 * 10^5 Pa
To get work, multiply the air pressure and the volume change.

W = 3.12 J
Hope this helps!
Answer:
1.7 seconds
Explanation:
To clear the intersection, the total distance to be covered = 59.7 + 25 =84.7m
first we need to find the initial speed to just enter the intersection by using the third equation of motion
v^2 - u^2 = 2*a*s
45^2 - u^2 = 2 * -5.7 * 84.7
u^2 = 45^2 +965.58
u^2 = 2990.58
u = 54.7 m/s
Now for time we apply the first equation of motion
v-u =a * t
t = (v-u)/a = (45 - 54.7)/-5.7 = 1.7seconds
If you run your boat aground, the first thing you should do is to calmly assess the situation. In case you have passengers on your boat, you should have them don PFDs (personal flotation devices). Afterwards, you should turn off the engine, check if there is any damage, and generally see if everything is okay.