Answer:
0.0428 M
Explanation:
Because we're asked to calculate the molarity of nickel(II) cation, we need to <u>determine all sources for that species</u>, in this case, all Ni⁺² comes from the nickel(II) bromide solid (NiBr₂).
We use the molecular weight of NiBr₂ to calculate the moles of Ni:
1.87 g NiBr₂ ÷ 218.49g/mol * (1molNi⁺²/1molNiBr₂) = 8.55x10⁻³ mol Ni⁺²
Then we <u>divide the moles by the volume in order to calculate the concentration</u>:
8.55x10⁻³ mol Ni⁺² / 0.200 L = 0.0428 M
Answer:
The approximate molar enthalpy of combustion of this substance is -66 kJ/mole.
Explanation:
First we have to calculate the heat gained by the calorimeter.

where,
q = Heat gained = ?
c = Specific heat = 
ΔT = The change in temperature = 3.08°C
Now put all the given values in the above formula, we get:


Now we have to calculate molar enthalpy of combustion of this substance :

where,
= enthalpy change = ?
q = heat gained = 8.2544kJ
n = number of moles methane = 

Therefore, the approximate molar enthalpy of combustion of this substance is -66 kJ/mole.
I bottle:
250 * 150mg = 37500mg
If 37500mg ------- cost ------- <span> $2.95
so 1mg ------- cost ------- x
x = 1mg*</span> $2.95 / 37500mg = $7,87*10⁻⁵
II bottle
125 * 200mg = 25000mg
If 25000mg ---------- cost ---------- <span>$3.50
so 1mg ---------- cost ---------- x
x = 1mg* </span>$3.50 / 25000mg = $0,00014=$1,4*10⁻⁴
$7,87*10⁻⁵ < $1,4*10<span>⁻⁴
</span>
1st bottle is better bargain cause 1mg of aspirin its cheaper than in 2nd.
Answer:
MnO4⁻ (aq) + 8H⁺ (aq) + 5Fe³⁺ (aq) →Mn(aq)²⁺ + 4H2O (l) + 5Fe²⁺(aq)
Explanation:
a)
MnO4⁻ (aq) + 8H⁺ (aq) + 5e⁻ → Mn(aq)²⁺ + 4H2O (l)
b)
5Fe³⁺ (aq) +5e⁻ → 5Fe²⁺(aq)
c)
MnO4⁻ (aq) + 8H⁺ (aq) + 5Fe³⁺ (aq) →Mn(aq)²⁺ + 4H2O (l) + 5Fe²⁺(aq)