Answer: 7 ft/sec
Step-by-step explanation:
To find the speed in feet per second, we divide distance by time.
=392/56= 7
Carter rode his bike at 7 ft/sec
Answer:
the answer is A
Step-by-step explanation:
Answer:
We note that the equation that is compatible with the given equation is the kinematic equation of free fall where;
t² = 39.2 × 2/9.81
From which we have;
The time it takes the snowball to reach the ground is approximately 2.83 seconds
Step-by-step explanation:
The height of the building from which the ball is dropped, h = 39.2 m
The equation of the dropped a snowball, is given as follows;
t² = 39.2 × 9.8
Using the From the equation of free fall, we have;
s = u·t + 1/2·g·t²
Where;
u = The initial velocity = 0 m/s
t = The time of flight
g = The acceleration due to gravity = 9.81 m/s²
Therefore, we get;
∴ s = The height from which the snowball is dropped = 39.2 m
Therefore, we get;
39.2 = 0×t + 1/2×9.81×t²
∴ t² = 39.2 × 2/9.81 ≈ 7.99
t = √(7.99) ≈ 2.83
The time it takes the snowball to reach the ground, t ≈ 2.83 s.
Answer:
∑ (-1)ⁿ⁺³ 1 / (n^½)
∑ (-1)³ⁿ 1 / (8 + n)
Step-by-step explanation:
If ∑ an is convergent and ∑│an│is divergent, then the series is conditionally convergent.
Option A: (-1)²ⁿ is always +1. So an =│an│and both series converge (absolutely convergent).
Option B: bn = 1 / (n^⁹/₈) is a p series with p > 1, so both an and │an│converge (absolutely convergent).
Option C: an = 1 / n³ isn't an alternating series. So an =│an│and both series converge (p series with p > 1). This is absolutely convergent.
Option D: bn = 1 / (n^½) is a p series with p = ½, so this is a diverging series. Since lim(n→∞) bn = 0, and bn is decreasing, then an converges. So this is conditionally convergent.
Option E: (-1)³ⁿ = (-1)²ⁿ (-1)ⁿ = (-1)ⁿ, so this is an alternating series. bn = 1 / (8 + n), which diverges. Since lim(n→∞) bn = 0, and bn is decreasing, then an converges. So this is conditionally convergent.