Answer:
Since k is constant, we can find k given any point by multiplying the x-coordinate by the y-coordinate. For example, if y varies inversely as x, and x = 5 when y = 2, then the constant of variation is k = xy = 5(2) = 10. Thus, the equation describing this inverse variation is xy = 10 or y = .planation:
Answer:
The remaining interior angles of this triangle are 140º and 10º
Step-by-step explanation:
The sum of the interior angles of a triangle is always 180º.
A triangle has 3 angles. In this problem, we have one of them, that i am going to call A1 = 30º.
The sum of a interior angle with it's respective exterior angle is also always 180º.
We have that one of the exterior angles is equal to 40°. So it's respective interior angle is
40º + A2 = 180º
A2 = 180º - 40º
A2 = 140º
Now we have two interior angles, and we know that the sum of the 3 interior angles is 180º. So:
A1 + A2 + A3 = 180º
A3 = 180º - A1 - A2
A3 = 180º - 30º - 140º
A3 = 180º - 170º
A3 = 10º
Answer:
7
Step-by-step explanation:
Substitution then simplify
Step-by-step explanation:
We can prove the statement is false by proof of contradiction:
We know that cos0° = 1 and cos90° = 0.
Let A = 0° and B = 90°.
Left-Hand Side:
cos(A + B) = cos(0° + 90°) = cos90° = 0.
Right-Hand Side:
cos(A) + cos(B) = cos(0°) + cos(90°)
= 1 + 0 = 1.
Since LHS =/= RHS, by proof of contradiction,
the statement is false.