Explanation:
that's impossible,the radius of the earth can't decrease when the mass doubles!
Answer:
Tp/Te = 2
Therefore, the orbital period of the planet is twice that of the earth's orbital period.
Explanation:
The orbital period of a planet around a star can be expressed mathematically as;
T = 2π√(r^3)/(Gm)
Where;
r = radius of orbit
G = gravitational constant
m = mass of the star
Given;
Let R represent radius of earth orbit and r the radius of planet orbit,
Let M represent the mass of sun and m the mass of the star.
r = 4R
m = 16M
For earth;
Te = 2π√(R^3)/(GM)
For planet;
Tp = 2π√(r^3)/(Gm)
Substituting the given values;
Tp = 2π√((4R)^3)/(16GM) = 2π√(64R^3)/(16GM)
Tp = 2π√(4R^3)/(GM)
Tp = 2 × 2π√(R^3)/(GM)
So,
Tp/Te = (2 × 2π√(R^3)/(GM))/( 2π√(R^3)/(GM))
Tp/Te = 2
Therefore, the orbital period of the planet is twice that of the earth's orbital period.
Answer:
Seismic waves cause Earthquakes by shaking the ground aggressively and dangerously. These waves are usually calculated on a seismograph to calculate how hard the earthquake hit that area. A transform Boundary creates the tension when the tectonic plates gets stuck. It stays stuck for a long period of time. Then, at one point, the tectonic plates become unstuck which releases the tension into waves which are called seismic waves. Hope I answered you question.
Power=Work/Time
The work done is the energy required to lift the box, fighting the force of gravity. So, Work=Potential energy of the box at 10 meters.
W=PE=mgh=(60)(9.8)(10)=5880J
Finally,
P=W/T=(5880)/(5)=1176Watt
So the answer is 1176 Watts
The AREA of the shaded region is the moving object's displacement.