Answer:
f = 1 m
Explanation:
The magnification of the lens is given by the formula:

where,
M = Magnification = 4
q = image distance = 5 m
p = object distance = ?
Therefore,

Now using thin lens formula:

<u>f = 1 m</u>
To solve this problem it is necessary to take into account the concepts of Intensity as a function of Power and the definition of magnetic field.
The intensity depending on the power is defined as

Where
P = Power
r = Radius
Replacing the values that we have,


The definition of intensity tells us that,

Where,
Magnetic field
Permeability constant
c = Speed velocity
Then replacing with our values we have,

Re-arrange to find the magnetic Field B_0

Therefore the amplitude of the magnetic field of this light is
dnxjjc cjgnjgjnffjnfkfmgkcknsmksjs dmxmcmfkcnfjcnfjfnfjf in jfnfifnfifnf
Answer:
Thus induced emf is 0.0531 V
Solution:
As per the question:
Diameter of the loop, 
Thus the radius of the loop, R = 0.048 m
Time in which the loop is removed, t = 0.15 s
Magnetic field, B = 1.10 T
Now,
The average induced emf, e is given by Lenz Law:


where
= magnetic flux = 
where
A = cross sectional area
Also, we know that:



e = 0.0531 V
The sketch is shown in the figure, where I indicates the direction of the induced current.