Answer:
Think of it this way If you have a phosphorus atom whats its oposites once you found that out you may be able to find the answer
Explanation:
Hope this helps :)
Answer is: <span>C.)It will be closer to the mass of Vi–193.
</span><span>Average atomic mass of vitellium =
Ar(Vi-188) </span>· ω(Vi-188) + Ar(Vi-191) · ω(Vi-191) + Ar(Vu-193) · ω(Vi-193).
Average atomic mass of vitellium =
187.9122 amu · 0,10861 + 190.9047 amu · 0,12428 + 192.8938 amu · 0,76711.
Average atomic mass of vitellium = 20,409 + 23,725 + 147,970.
Average atomic mass of vitellium = 192,104.
Variations in the solar resource are probably the first and main consideration. You can use local weather stations where available, otherwise satellite data (eg from NASA's website) or commercial databases such as Meteonorm. Also there is quite a comprehensive set of data files in the SAM software
Other important considerations are
local environment: plants and animals that could be affected by the system; community support and buy-in.wind, hail, rain, snow profile for the location in question. if there are high/tropical winds then it will increase the plant cost.flight paths and roads near the plant which could be affected by glint and glareproximity to a local town where staff will be able to live both during construction and later during operationproximity to a electricity transmission line with available capacityavailability of water for mirror cleaning and steam blowdown.cost (and availability) of electricity in the area. If remote, electricity/energy may be very expensive, which will enable a high price for electricity sold from the plant.quality of road to the plant, required to bring equipment and materials to sitepolitical stability of the region -- potential impact on perceived bankability of the project.
Many of these items will have a large influence on the cost of the plant and/or the revenue it will generate during its life. Others relate to environmental and risk factors and are also critically important to consider.
Hope this helps!!
14. a. Acidic
15. b. Weaker
16. d. Dilute and weak
Explanation:
14. Which type of the solution is one with the pH of 3?
Solution with pH from 1 to 7 are acidic, equal to 7 is neutral and from 7 to 14 basic. The solution with the pH equal to 3 is <u>acidic</u>.
15. The smaller the value of the base dissociation constant (Kb), the <u>weaker</u> the base.
The dissociation reaction of a base (B) is:
B + H₂O → BH⁺ + OH⁻
Kb is defined as:
Kb = ( [BH⁺] × [OH⁻] ) / ( [B] × [H₂O] )
The potency of the base depends on the concentration of the hydroxide ion [OH⁻], so if the Kb ratio is small it means that the concentration of hydroxide ion is smaller so the base will be <u>weaker</u>.
16. A 0.39 M solution of an acid that ionizes only slightly in solution would be termed <u>dilute and weak</u>.
The acid is weak because is only slightly ionizing in solution. The therm diluted is a little bit arbitrarily because we ask yourself "diluted in respect with what"? I would characterize the acid to be diluted at a concentration of 1 M and concentrated at a concentration of 10 M.
Learn more about:
pH
brainly.com/question/1402522
#learnwithBrainly
Answer:
Of course it's C
Red planet
Explanation:
It is because the soil on Mars is rich of Fe (Iron).
That makes the soil look red.
Even on our planet we have such this places like hormuz island in Iran.