This is a straightforward dilution calculation that can be done using the equation
where <em>M</em>₁ and <em>M</em>₂ are the initial and final (or undiluted and diluted) molar concentrations of the solution, respectively, and <em>V</em>₁ and <em>V</em>₂ are the initial and final (or undiluted and diluted) volumes of the solution, respectively.
Here, we have the initial concentration (<em>M</em>₁) and the initial (<em>V</em>₁) and final (<em>V</em>₂) volumes, and we want to find the final concentration (<em>M</em>₂), or the concentration of the solution after dilution. So, we can rearrange our equation to solve for <em>M</em>₂:

Substituting in our values, we get
![\[M_2=\frac{\left ( 50 \text{ mL} \right )\left ( 0.235 \text{ M} \right )}{\left ( 200.0 \text{ mL} \right )}= 0.05875 \text{ M}\].](https://tex.z-dn.net/?f=%5C%5BM_2%3D%5Cfrac%7B%5Cleft%20%28%2050%20%5Ctext%7B%20mL%7D%20%5Cright%20%29%5Cleft%20%28%200.235%20%5Ctext%7B%20M%7D%20%5Cright%20%29%7D%7B%5Cleft%20%28%20200.0%20%5Ctext%7B%20mL%7D%20%5Cright%20%29%7D%3D%200.05875%20%5Ctext%7B%20M%7D%5C%5D.)
So the concentration of the diluted solution is 0.05875 M. You can round that value if necessary according to the appropriate number of sig figs. Note that we don't have to convert our volumes from mL to L since their conversion factors would cancel out anyway; what's important is the ratio of the volumes, which would be the same whether they're presented in milliliters or liters.
<span>A 18 M solution of an acid that ionizes only slightly in solution would be termed
concentrated and weak. The concentration of the acid is high. The acid which dissociates partially in water is a weak acid.
</span><span>Calculate the [H^+] for the aqueous solution in which [OH^-] is 1 x10^-9. Is this solution acidic, basic or neutral. To determine [H+] use:
1x10^-14 = [OH-][H+]
solve for [H+]
[H+] = 1x10^-14/1x10^-9
= 1x10^-5</span>
Answer: Option (a) is the correct answer.
Explanation:
According to thermodynamics, a closed system is defined as the system in which there will be no exchange of matter takes place but there will be exchange of energy between the system and surrounding.
On the other hand, an open system is defined as the system in which there will be exchange of both matter and energy takes place between system and surrounding.
Hence, we can conclude that out of the given options accurate descriptions of closed and open thermodynamic processes is that open processes are 'flow through' processes.
Answer: A. unsaturated.
Explanation:
Unsaturated solution is defined as the solution in which more solute particles can be dissolved in the solvent.
Saturated solution is defined as the solution in which no more solute particles can be dissolved in the solvent.
Supersaturated solution is defined as the solution in which more amount of solute particles is present than the solvent particles.
Given: Solubility = 30g/100ml
If 100 ml can dissolve ionic compound = 30 g
300 ml can dissolve ionic compound =
Thus solubility is 90g/300 ml and dissolved salt is only 70 g , the solution is said to be unsaturated.