The molecular structure of 1-nitrobutane is
. The structure of 1-nitrobutane is shown below.
An atom's formal charge would be determined by the covalent model of chemical bonding, which assumes that almost all chemical bonds include equal sharing of electrons among all atoms, regardless their relative electronegativity.
The structure for 1-nitrobutane, making sure to add all non-zero formal charges
There are four kind of molecule present in 1-nitrobutane and they are carbon, hydrogen , nitrogen and oxygen. Nitrogen is bonded with two oxygen atom out of them one oxygen atom is attached with single bond and second oxygen atom is bonded with double bond. Nitrogen has positive charge whereas oxygen has negative charge.
It is a kind of alkane in with nitro group is attached with alkane group.
To know more about 1-nitrobutane
brainly.com/question/25045923
#SPJ4
Answer
Susan can process wind speed data from different regions.
Explanation
A Doppler radar is used in weather forecasting in measuring the direction and speed of objects such as drops of precipitation. It determines if the movement occurring in the atmosphere is horizontally towards or way from the radar. Susan can obtain velocity data about objects at a distance which might be water droplets thus be able to predict a coming weather
Answer:
See explanation.
Explanation:
Are you literally posting your entire you chemistry homework on this site, one question at a time? Anyways, the heat death refers to the second law of thermodynamics and entropy. Heat is constantly flowing from warmer to cooler objects and never the other way around. This heat flow increases entropy, which is constantly increasing. The universe will eventually disperse all of its heat energy away to continuously increase entropy and reach a limit as the temperature reaches 0 K at which point all molecular motion will cease and so will the life of the universe.
Answer:
5.7 moles of O2
Explanation:
We'll begin by writing the balanced decomposition equation for the reaction. This is illustrated below:
2KClO3 —> 2KCl + 3O2
From the balanced equation above,
2 moles of KClO3 decomposed to produce 3 moles of O2.
Next, we shall determine the number of mole of O2 produced by the reaction of 3.8 moles of KClO3.
Since 100% yield of O2 is obtained, it means that both the actual yield and theoretical yield of O2 are the same. Thus, we can obtain the number of mole of O2 produced as follow:
From the balanced equation above,
2 moles of KClO3 decomposed to produce 3 moles of O2.
Therefore, 3.8 moles of KClO3 will decompose to produce = (3.8 × 3)/2 = 5.7 moles of O2.
Thus, 5.7 moles of O2 were obtained from the reaction.