Answer:

Step-by-step explanation:
Substitute the value of the variable into the equation and simplify.
Kelly can show 49 with 4 ten blocks and 9 one blocks, 49 ones blocks, and she take a one hundred grid block, places 4 tens on 4 columns of the 100 and 9 one blocks on one row of the 100 grid block.
Answer: Each fraction is greater than the previous fraction.
Step-by-step explanation:
The fractions given are:
2/3, 4/6, 8/12, 16/24
Note that
2/3 = 4/6 = 8/12 = 16/32
The Fractions are all equal. Each fraction is equivalent to 2/3
The pattern used here is:
2/3 × 2/2 = 4/6
4/6 × 2/2 = 8/12
8/12 × 2/2 = 16/24
16/24 × 2/2 = 32/48
Each fraction is equal to the previous fraction in the pattern multiplied by 2/2
Also, the next fraction in the pattern is 32/48.
The statement that "Each fraction is greater than the previous fraction" is incorrect. The fractions are all equal.
Using the <u>normal approximation to the binomial</u>, it is found that there is a 0.994 = 99.4% probability that we will have enough seats for everyone who shows up.
In a normal distribution with mean
and standard deviation
, the z-score of a measure X is given by:
- It measures how many standard deviations the measure is from the mean.
- After finding the z-score, we look at the z-score table and find the p-value associated with this z-score, which is the percentile of X.
- The binomial distribution is the probability of <u>x successes on n trials</u>, with <u>p probability</u> of a success on each trial. It can be approximated to the normal distribution with
.
In this problem:
- 15% do not show up, so 100 - 15 = 85% show up, which means that
. - 300 tickets are sold, hence
.
The mean and the standard deviation are given by:


The probability that we will have enough seats for everyone who shows up is the probability of at most <u>270 people showing up</u>, which, using continuity correction, is
, which is the <u>p-value of Z when X = 270.5</u>.



has a p-value of 0.994.
0.994 = 99.4% probability that we will have enough seats for everyone who shows up.
A similar problem is given at brainly.com/question/24261244