The equation of the newsletter function is C(x) = 75 + 0.25x and the function values are C(0) = 75, C(100) = 100, C(200) = 125 and C(300) = 150
<h3 /><h3>How to determine the newsletter function?</h3>
From the question, the given parameters are
Initial charge = $75.00
Rate per copy = $0.25 per copy
The equation of the newsletter function is then calculated as
Total = Initial charge + Rate per copy x Number of copies
Let x represents the number of copies
So, we have
Total = Initial charge + Rate per copy x x
This gives
C(x) = 75 + 0.25x
<h3>The function values for x = 0, 100, 200 and 300</h3>
When x = 0, we have
C(0) = 75 + 0.25 x 0 = 75
When x = 100, we have
C(100) = 75 + 0.25 x 100 = 100
When x = 200, we have
C(200) = 75 + 0.25 x 200 = 125
When x = 300, we have
C(300) = 75 + 0.25 x 300 = 150
Read more about linear equations at
brainly.com/question/4074386
#SPJ1
So if his homework takes 25 minutes , and his math takes m minutes , and then as a while it takes h minutes, here’s an example of two equations you can use ;
M+25= h of 25+m=h you can do either one as you please because it doesn’t matter the order as long as they
Both equal h !! Hope this helps , sorry that it’s overdue :( have a great day:))))
Answer:
116 miles
Step-by-step explanation:
We can solve this by first writing an equation for the cost of the car rental. To begin, the base cost is $17.95, so any further costs must be added to that. Next, the car costs 19 cents (0.19 dollars) for each mile driven, so for each mile, we add 19 cents. This can be written as 0.19 *x if x represents the amount of miles driven. Therefore, we can add the two input costs of the car (the base cost and cost per mile) to get
17.95 + 0.19 * x = total cost.
After that, we want to maximize x/the number of miles with only 40 dollars. We can do this by setting this equal to the total cost, as going over the total cost is impossible and going under would be limiting the amount of miles (this because we are adding money for each mile, so more money means more miles). Therefore, we have
17.95 + 0.19 * x = 40
subtract 17.95 from both sides to isolate the x and its coefficient
22.05 = 0.19 * x
divide both sides by 0.19 to isolate x
22.05/0.19 = x = 116.05
The question asked us to round down, and 116.05 rounded down is 116 for our answer
Answer:
In the image
Hope this helps!
Step-by-step explanation: