Answer:
Never store used oil in anything other than tanks and storage containers. Used oil may also be stored in units that are permitted to store regulated hazardous waste. Tanks and containers storing used oil do not need to be RCRA permitted, however, as long as they are labeled and in good condition.
Answer: 1. P1V1 = P2V2
2. P stands for pressure
3. Units for Pressure are atm and Pa
4. V stands for volume
5. Units for volume is in mL
Explanation: Boyle's Law is a gas law that states the relationship between pressure and volume of a gas.
<span>D) recycling ;)
Waste Management's Aerobic-Anaerobic Bioreactor* is designed to accelerate waste degradation by combining attributes of the aerobic and anaerobic bioreactors. The objective of the sequential aerobic-anaerobic treatment is to cause the rapid biodegradation of food and other easily degradable waste in the aerobic stage in order to reduce the production of organic acids in the anaerobic stage resulting in the earlier onset of methanogenesis. In this system the uppermost lift or layer of waste is aerated, while the lift immediately below it receives liquids. Landfill gas is extracted from each lift below the lift receiving liquids. Horizontal wells that are installed in each lift during landfill construction are used convey the air, liquids, and landfill gas. The principle advantage of the hybrid approach is that it combines the operational simplicity of the anaerobic process with the treatment efficiency of the aerobic process. Added benefits include an expanded potential for destruction of volatile organic compounds in the waste mass. (*US Patent 6,283,676 B1)</span>
Answer:
Cl⁻, Na⁺, OH⁻
Explanation:
The titration is:
CuCl₂(aq) + 2 NaOH(aq) → Cu(OH)₂(s) + 2 NaCl(aq)
In solution, before the reaction, the ions are Cu²⁺ and Cl⁻. The addition of NaOH (Na⁺ + OH⁻) produce the precipitation of Cu²⁺ forming Cu(OH)₂(s). When you reach the equivalence point, there is no Cu²⁺ because precipitates completely. All OH⁻ ions reacts when are added but when Cu²⁺ is finished, excess OH⁻ ions still in solution helping to detect the equivalence point.
Thus, ions present after the equivalence point are:<em> Cl⁻, Na⁺</em> (Don't react, spectator ions), and <em>OH⁻</em>.