Answer
Sounds travel slowest in gasses so it would be air
According to Dalton's Law, in a mixture of non-reacting gasses, thetotal pressure<span> exerted is the sum of the </span>partial pressures<span> of the component gasses. In more complicated circumstances, equilibrium states come into effect, but fortunately for us, </span>oxygen<span> is non-reactive with </span>water vapor<span>.</span>
Answer:
Potassium cation = K⁺²
Explanation:
The metal cation in K₂SO₄ is K⁺². While the anion is SO₄²⁻.
All the metals have tendency to lose the electrons and form cation. In given compound the metal is potassium so it should form the cation. The overall compound is neutral.
The charge on sulfate is -2. While the oxidation state of potassium is +1. So in order to make compound overall neutral there should be two potassium cation so that potassium becomes +2 and cancel the -2 charge on sulfate and make the charge on compound zero.
2K⁺² , SO₄²⁻
K₂SO₄
You have to figure out a way to write the two unknown abundances in terms of one variable.
The total abundance is 1 (or 100%). So if you say the abundance for the first one is X then the abundance for the second one has to be 1-X (where X is the decimal of the percentage so say 0.8 for 80%).
203(X) + 205(1-X) = 204.4
Then you just solve for X to get the percentage for TI-203.
And then solve for 1-X to get the percentage for TI-205.
After that the higher percentage would be the most abundant.
203x + 205 - 205x = 204.4
-2x + 205 = 204.4
-2x = -0.6
x = 0.3
1-x = 0.7
Then the TI-205 would have the highest percentage and would be the most abundant.
There are 1.92 × 10^23 atoms Mo in the cylinder.
<em>Step 1</em>. Calculate the <em>mass of the cylinder
</em>
Mass = 22.0 mL × (8.20 g/1 mL) = 180.4 g
<em>Step 2</em>. Calculate the<em> mass of Mo
</em>
Mass of Mo = 180.4 g alloy × (17.0 g Mo/100 g alloy) = 30.67 g Mo
<em>Step 3</em>. Convert <em>grams of Mo</em> to <em>moles of Mo
</em>
Moles of Mo = 30.67 g Mo × (1 mol Mo/95.95 g Mo) = 0.3196 mol Mo
<em>Step 4</em>. Convert <em>moles of M</em>o to <em>atoms of Mo
</em>
Atoms of Mo = 0.3196 mol Mo × (6.022 × 10^2<em>3</em> atoms Mo)/(1 mol Mo)
= 1.92 × 10^23 atoms Mo