Answer: 0.8M
Explanation:
Given that,
Amount of moles of NaCl (n) = ?
Mass of NaCl in grams = 1.40 g
For molar mass of NaCl, use the molar masses:
Sodium, Na = 23g;
Chlorine, Cl = 35.5g
NaCl = (23g + 35.5g)
= 58.5g/mol
Since, amount of moles = mass in grams / molar mass
n = 1.40g / 58.5g/mol
n = 0.024 mole
Now, given that:
Amount of moles of NaCl (n) = 0.024
Volume of NaCl solution (v) = 30.0mL
[Convert 30.0mL to liters
If 1000 mL = 1L
30.0mL = 30.0/1000 = 0.03L]
Concentration of NaCl solution (c) = ?
Since concentration (c) is obtained by dividing the amount of solute dissolved by the volume of solvent, hence
c = n / v
c = 0.024 mole / 0.03 L
c = 0.8 M (0.8M means concentration is in moles per litres)
Thus, the concentration of the solution is 0.8M
Answer:
Ammonium nitrate, (NH4NO3), a salt of ammonia and nitric acid, used widely in fertilizers and explosives. The commercial grade contains about 33.5 percent nitrogen, all of which is in forms utilizable by plants; it is the most common nitrogenous component of artificial fertilizers.
0.34 moles of gas would be contained in a 11.2 L container that is at a pressure of 0.75 atm and 300 K.
<h3>HOW TO CALCULATE NUMBER OF MOLES?</h3>
The number of moles of a substance can be calculated using the following expression:
PV = nRT
Where;
- p = pressure (atm)
- v = volume (L)
- n = number of moles
- R = gas law constant
- T = temperature
0.75 × 11.2 = n × 0.0821 × 300
8.4 = 24.63n
n = 8.4 ÷ 24.63
n = 0.34 moles
Therefore, 0.34 moles of gas would be contained in a 11.2 L container that is at a pressure of 0.75 atm and 300 K.
Learn more about number of moles at: brainly.com/question/1190311
He used prisms to demonstrate how white light is in fact made