Because they are farther across the periodic table<span />
Answer:


Explanation:
Hello!
In this case, since the molecular formula of glycine is C₂H₅NO₂, we realize that the molar mass is 75.07 g/mol; thus, the moles in 130.0 g of glycine are:

Furthermore, we can notice 75.07 grams of glycine contains 14.01 grams of nitrogen; thus, the percent nitrogen turns out:

Best regards!
Answer:
0.500 mole of Xe (g) occupies 11.2 L at STP.
General Formulas and Concepts:
<u>Gas Laws</u>
- STP (Standard Conditions for Temperature and Pressure) = 22.4 L per mole at 1 atm, 273 K
<u>Stoichiometry</u>
- Mole ratio
- Dimensional Analysis
Explanation:
<u>Step 1: Define</u>
<em>Identify.</em>
0.500 mole Xe (g)
<u>Step 2: Convert</u>
- [DA] Set up:

- [DA] Evaluate:

Topic: AP Chemistry
Unit: Stoichiometry
Answer: 4000000000
because 20X200000000=4000000000
Answer:
Adding 1 mol of NaCl to 1 kg of water lower the vapor pressure of water <em><u>to the same extent</u></em> by adding 1 mol of
to 1 kg of water.
Explanation:
1) Moles of NaCl ,
Mass of water = m= 1 kg = 1000 g
Moles of water = 
Vapor pressure of the solution = 
Vapor pressure of the pure solvent that is water = 
Mole fraction of solute(NaCl)= 



The vapor pressure for the NaCl solution at 17.19 Torr.
2) Moles of sucrose ,
Mass of water = m = 1 kg = 1000 g
Moles of water = 
Vapor pressure of the solution = 
Vapor pressure of the pure solvent that is water = 
Mole fraction of solute ( glucose)= 



The vapor pressure for the glucose solution at 17.19 Torr.
p = p' = 17.19 Torr
Adding 1 mol of NaCl to 1 kg of water lower the vapor pressure of water to the same extent by adding 1 mol of
to 1 kg of water.