Answer:
313.92w
Explanation:
Formula for power:
P=W/∆t = Fv
Givens:
m=20kg
∆y=4.0m
∆t=2.5s
a=9.81m/s²
In order to find power, we first need to solve for work.
W=Fd (force*displacement), f=mg
W=mg∆y
W=(20kg)(9.81m/s²)(4.0m)
W=784.8J
P=W/∆t
P=784.8J/2.5s
P=313.92 watts
Answer:
(A) Distance will be equal to 1.75 km
(B) Displacement will be equal to 1.114 km
Explanation:
We have given circumference of the circular track = 3.5 km
Circumference is given by 
r = 0.557 km
(a) It is given that car travels from southernmost point to the northernmost point.
For this car have to travel the distance equal to semi perimeter of the circular track
So distance will be equal to 
(b) If car go along the diameter of the circular track then it will also go from southernmost point to the northernmost point. and it will be equal to diameter of the track
So displacement will be equal to d = 2×0.557 = 1.114 m
<h3><u>Answer;</u></h3>
Large mirrors are easier to build than large lenses.
<h3><u>Explanation;</u></h3>
- <em><u>Reflector telescopes have a number of advantages as compared to refracting telescopes and other types of telescopes. </u></em>
- <em><u>Reflector telescopes do not suffer from chromatic aberration because all wavelengths will reflect off the mirror in the same way. The support for the objective mirror is all along the back side so they can be made very large.</u></em>
- Additionally, reflector telescopes are cheaper to make than refractors of the same size. Also since in reflector telescopes light is reflecting off the objective, rather than passing through it, only one side of the reflector telescope's objective needs to be perfect.
The cube has 6 equal, square, foil faces. The mass of foil for each face is (380/6) milligrams.
The surface area of each piece is (380)/(6•11) cm^2.
The length of each side of the piece is √(380/6•11) cm
That's about 2.4 cm .
It's a cute little foil cube, just under 1-inch each way.