The local minimum of function is an argument x for which the first derivative of function g(x) is equal to zero, so:
g'(x)=0
g'(x)=(x^4-5x^2+4)'=4x^3-10x=0
x(4x^2-10)=0
x=0 or 4x^2-10=0
4x^2-10=0 /4
x^2-10/4=0
x^2-5/2=0
[x-sqrt(5/2)][x+sqrt(5/2)]=0
Now we have to check wchich argument gives the minimum value from x=0, x=sqrt(5/2) and x=-sqrt(5/2).
g(0)=4
g(sqrt(5/2))=25/4-5*5/2+4=4-25/4=-9/4
g(-sqrt(5/2))=-9/4
The answer is sqrt(5/2) and -sqrt(5/2).
If 1.5 and 2.5 are the height and base, then just use Pythagorean theorem,
To solve this problem, we must imagine the triangles and
parallel lines which are formed. It is best to draw the triangle described in
the problem so that you can clearly understand what I will be talking about.
The first step we have to do is to make an equality equation
in triangle ABC.
In triangle ABC, we are given that lines XY and BC are two
parallel lines (XY || BC). Therefore
this means that:
AX / XB = AY / YC --->
1
The next step is to make an equality equation in triangle
AXC.
We are given that lines ZY and XC are two parallel lines (ZY
|| XC). Therefore this also means that:
AZ / ZX = AY / YC ---> 2
Combining 1 and 2 since they have both AY / YC in common:
AX / XB = AZ / ZX
we are given that:
AZ = 8, ZX = 4 therefore AX = AZ + ZX = 12, hence
12 / XB = 8 / 4
XB = 6
Answer:
The value of currents are
,
and
.
Step-by-step explanation:
The Ohm's law states that
It is given that the V₁=3V and V₂=4V.
In a parallel circuit:
→ Voltage is same in each component
→ Sum of the currents equals to the total current that flows.
.... (1)
Equation for first loop is,
..... (2)
Equation for second loop is,
..... (3)
On solving (1), (2) and (3) we get
Therefore the value of currents are
,
and
.