Answer:
83°C
Explanation:
The following were obtained from the question:
M = 40g
C = 4.2J/g°C
T1 = 91°C
T2 =?
Q = 1300J
Q = MCΔT
ΔT = Q/CM
ΔT = 1300/(4.2x40)
ΔT = 8°C
But ΔT = T1 — T2 (since the reaction involves cooling)
ΔT = T1 — T2
8 = 91 — T2
Collect like terms
8 — 91 = —T2
— 83 = —T2
Multiply through by —1
T2 = 83°C
The final temperature is 83°C
The answer is 6.25 x 10^4.
3.gases- <span> Their molecules are already the farthest apart compared with solids and liquids, and small changes in temperature causes these loose molecules.</span>
To solve for the absolute temperature, we assume ideal gas
behaviour so that we use the equation:
PV = nRT
or T = PV / nR
So calculating:
T = [6.6 atm * 0.40 L] / [(2.4g / 28g/mol) * 0.08205746 L
atm / mol K]
<span>T = 375.35 K</span>
Solids are the only ones that keep their shape and volume no matter the container.