Answer:
The point P(1,-3) is not a solution to the system.
Step-by-step explanation:
Given
Let a point be P(1,-3)
Here x = 1 ; y = -3
Substituting the values of x,y in the function

For y<x-1
-3 < 1-1
-3<0 (True)
now for,
y>-x+2
-3 > -1 + 2
-3 > 1 (False)
Hence the point is not a solution to the system.
<em>Look</em><em> </em><em>at</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>picture</em>
<em>H</em><em>ope</em><em> </em><em>it</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>you</em><em>.</em><em>.</em><em>.</em>
<em>Good</em><em> </em><em>l</em><em>uck</em><em> </em><em>on</em><em> </em><em>your</em><em> </em><em>assignment</em>
<em>~</em><em>p</em><em>r</em><em>a</em><em>g</em><em>y</em><em>a</em>
Answer:
32
Step-by-step explanation:
f(x)= 3(x-2)² + 5
Let x = -1
f(-1)= 3(-1-2)² + 5
Parentheses first
f(-1) = 3(-3)^2 +5
Exponents
f(-1)= 3*9 + 5
Multiply
f(-1) = 27+5
Add
f(-1) = 32
Answer:
(3)
and 
(4) 
Step-by-step explanation:
Question 3
Required
Solve for x and y
We have:
--- angle on a straight line
Collect like terms


Solve for x


Also:
---- opposite angles
So, we have:



Divide by 2


Question 4:
Required
Solve for x
We have:
---- angle at right-angled
Collect like terms


Divide by 16
