Considering the equivalence between mass and energy given by the expression of Einstein's theory of relativity, the correct answer is the last option: the energy equivalent of an object with a mass of 1.05 kg is 9.45×10¹⁶ J.
The equivalence between mass and energy is given by the expression of Einstein's theory of relativity, where the energy of a body at rest (E) is equal to its mass (m) multiplied by the speed of light (c) squared:
E=m×c²
This indicates that an increase or decrease in energy in a system correspondingly increases or decreases its mass, and an increase or decrease in mass corresponds to an increase or decrease in energy.
In other words, a change in the amount of energy E, of an object is directly proportional to a change in its mass m.
In this case, you know:
Replacing:
E= 1.05 kg× (3×10⁸ m/s)²
Solving:
<u><em>E= 9.45×10¹⁶ J</em></u>
Finally, the correct answer is the last option: the energy equivalent of an object with a mass of 1.05 kg is 9.45×10¹⁶ J.
Learn more:
Its vey True trust me on this when I say it is
To solve this problem, we will start by defining each of the variables given and proceed to find the modulus of elasticity of the object. We will calculate the deformation per unit of elastic volume and finally we will calculate the net energy of the system. Let's start defining the variables
Yield Strength of the metal specimen

Yield Strain of the Specimen

Diameter of the test-specimen

Gage length of the Specimen

Modulus of elasticity



Strain energy per unit volume at the elastic limit is



Considering that the net strain energy of the sample is




Therefore the net strain energy of the sample is 
Answer:
That is true.
Explanation:
When the input force is applied to the wheel, as it is with a doorknob, the axle turns over a shorter distance but with greater force, so the mechanical advantage is greater than 1.