<span>The answer is letter D.
The most important step in formulation a scientific inquiry is to first formulate a question. All answers sprung from a question that scratched the mind. Experimentation is not possible without the need to question, with this, the drive to find the answers is what motivates scientists or people involved in an experiment to find the answers that would suffice their curiosity. Questions are the basis of all the other choices above and is the most crucial step in the scientific inquiry.<span>
</span></span>
Answer:
W = ½ m v²
Explanation:
In this exercise we must solve it in parts, in a first part we use the conservation of the moment to find the speed after the separation
We define the system formed by the two parts of the rocket, therefore the forces during internal separation and the moment are conserved
initial instant. before separation
p₀ = m v
final attempt. after separation
= m /2 0 + m /2 v_{f}
p₀ = p_{f}
m v = m /2 
v_{f}= 2 v
this is the speed of the second part of the ship
now we can use the relation of work and energy, which establishes that the work is initial to the variation of the kinetic energy of the body
initial energy
K₀ = ½ m v²
final energy
= ½ m/2 0 + ½ m/2 v_{f}²
K_{f} = ¼ m (2v)²
K_{f} = m v²
the expression for work is
W = ΔK = K_{f} - K₀
W = m v² - ½ m v²
W = ½ m v²
Answer:
a) 70 N, b) b. Each initially applied a force bigger than static friction to get the box moving and accelerating, then when the desired final speed was achieved they reduced the force to make the net force zero.
Explanation:
a) A constant speed means that magnitude of friction force is equal to the magnitude of the external force. The friction force is directly proportional to the normal force, which is equal to the weight of the box. Therefore, the magnitude of the force is 70 N.
b) Alice used initially a greater force to accelerate the box up to needed speed and later reduced the external force to keep speed constant. The right choice is option b.
To solve this problem it is necessary to apply an energy balance equation in each of the states to assess what their respective relationship is.
By definition the energy balance is simply given by the change between the two states:

Our states are given by



In this way the energy balance for the states would be given by,



Therefore the states of energy would be
Lowest : 0.9eV
Middle :7.5eV
Highest: 8.4eV