The RC time constant, also called tau, the time constant (in seconds) of an RC circuit, is equal to the product of the circuit resistance (in ohms) and the circuit capacitance (in farads), i.e.

Here,
R = Resistance
C = Capacitance
Replacing we have that



Therefore the time constant of this circuit is 
Answer:
Their research differs because they were both talking about different things, Hayes was talking about how many lakes there were, while Malaska's was doing more hands on stuff like experiments. Both are important because we need to learn how the lakes formed, but we also need to do hands on experiments.
Answer:
There may be excess charges in the interior of the wire
The net electric field everywhere inside the wire is zero
The interior of the metal wire is neutral.
There may be excess charges on the surface of the wire.
There is no net flow of mobile electrons inside the wire.
Explanation:
For any metal wire in equilibrium position, there may be excess charges in the interior of the wire and the net electric field everywhere inside the wire is zero. Additionally, the interior of the metal wire is always neutral and there is likely to be excess charges on the surface of the wire. Moreover, it's important to note that for a metal wire in equilibrium, there is no net flow of mobile electrons inside the wire.
Size. The answer is size.