Answer:
Explanation:
4/1=4
3/2=1.5
2/3=0.666667
1/4=0.25
D has the least number so its D
In the above case we can say that power given by external agent to pull the rod must be equal to the power dissipated in the form of heat due to magnetic induction.
Part a)
when we pull the rod with constant speed then power required will be product of force and velocity
here we will have

P = 4 W
v = 4 m/s
now we will have


So external force required will be 1 N
PART B)
now in order to find magnetic field strength we can say

here we know that induced EMF in the wire is E = vBL
so power due to induced magnetic field is given by


by solving above equation we will have

Answer:
support lights as a wave
Explanation:
In the model of light as a particle, the experimenter would expect to see one small hole of light emerging on the wall. However, as the light spreads out, it behaves much like a wave that diffracts when going through a small hole.
Answer:
a) -31.36 m/s
b) 50.176 m
Explanation:
<h2>a) Velocity of the bag</h2>
This is a problem of motion in one direction (specifically vertical motion), and the equation that best fulfills this approach is:
(1)
Where:
is the final velocity of the supply bag
is the initial velocity of the supply bag (we know it is zero because we are told <u>it was "dropped", this means it goes to ground in free fall</u>)
is the acceleration due gravity (the negtive sign indicates the gravity is downwards, in the direction of the center of the Earth)
is the time
Knowing this, let's solve (1):
(2)
Hence:
Note the negative sign is because the direction of the bag is downwards as well.
<h2>b) Final height of the bag</h2>
In this case we will use the following equation:
(3)
Where:
is the distance the bag has fallen
remembering <u>the bag was dropped</u>
is the acceleration due gravity (downwards)
is the time
Then:
(3)
(4)
Finally:
Answer:
The ball is moving in a horizontal circle.
The force acting towards the center of the circle is
F = M a = M * V^2 / R
a = V^2 / R simplifying equation
V = (a / R)^1/2 = (23 / .66)^1/2 = 5.90 m/s