Question:
What's the article about?
Answer:
11,000 cm
Explanation:
Step 1: Given data
Width of the field (w): 17 meters
Length of the field (l): 38 meters
Step 2: Calculate the perimeter of the field
The field is a rectangle. We can find its perimeter (P) by adding its sides.
P = 2 × w + 2 × l = 2 × 17 m + 2 × 38 m = 110 m
Step 3: Convert the perimeter to centimeters
We will use the relationship 1 m = 100 cm.
110 m × (100 cm/1 m) = 11,000 cm
Answer:
e) The activation energy of the reverse reaction is greater than that of the forward reaction.
Explanation:
- Activation energy is the minimum amount of energy that is required by the reactants to start a reaction.
- An exothermic reaction is a reaction that releases heat energy to the surrounding while an endothermic reactions is a reaction that absorbs heat from the surrounding.
- <em><u>In reversible reactions, when the forward reaction is exothermic it means the reverse reaction will be endothermic, therefore the reverse reaction will have a higher activation energy than the forward reaction.</u></em> The activation energy of the reverse reaction will be the sum of the enthalpy and the activation energy of the forward reaction.
Answer:
C is the excess reactant.
Explanation:
Reaction is C + O2 --> CO2
1mol of C required to react with 1mol O2
Therefore 15 - 10 = 5moles of C will be in excess
Answer:
0.683 moles of the gas are required
Explanation:
Avogadro's law relates the moles of a gas with its volume. The volume of a gas is directely proportional to its moles when temperature and pressure of the gas remains constant. The law is:
V₁n₂ = V₂n₁
<em>Where V is volume and n are moles of 1, initial state and 2, final state of the gas.</em>
<em />
Computing the values of the problem:
1.50Ln₂ = 5L*0.205mol
n₂ = 0.683 moles of the gas are required
<em />