Answer: There are 7 alpha-particle emissions and 4 beta-particle emissions involved in this series
Explanation:
Alpha Decay: In this process, a heavier nuclei decays into lighter nuclei by releasing alpha particle. The mass number is reduced by 4 units and atomic number is reduced by 2 units.
Beta Decay : It is a type of decay process, in which a proton gets converted to neutron and an electron. This is also known as -decay. In this the mass number remains same but the atomic number is increased by 1.
In radioactive decay the sum of atomic number or mass number of reactants must be equal to the sum of atomic number or mass number of products .

Thus for mass number : 235 = 207+4X
4X= 28
X = 7
Thus for atomic number : 92 = 82+2X-Y
2X- Y = 10
2(7) - Y= 10
14-10 = Y
Y= 4

Thus there are 7 alpha-particle emissions and 4 beta-particle emissions involved in this series
Answer:
Here's what I get
Explanation:
A plant extract is a mixture because it contains different substances: acetone or ethanol, chlorophylls A and B, carotene and xanthophylls.
It is homogeneous because it is a solution. There is only one phase: the liquid phase. You cannot see the pigments as separate phases.
You can separate the pigments by paper, thin layer, or column chromatography.
Many schools use paper chromatography, because paper is cheap.
As the mixture of pigments follows the solvent up the paper, they separate into different coloured bands according to their attractive forces to the cellulose in the paper.
The chlorophylls are strongly attracted to the paper, so they don't travel very far.
The nonpolar carotene molecules have little attraction to the polar cellulose, so they are carried along by the solvent front.
Answer: 0.0069L
Explanation:
2H2O(l) ---->O2(g) + 4H+(aq) + 4e-
no of moles= it/eF
NO of moles of O2 produced = (Current in Ampere x Time in second)/ (Faraday constant x Number of electrons required)
Moles of O2 produced = (0.02x (60 x 60X1.5 s)/(96485 x 4)
= 0.0002798 moles= 2.798x 10 ^-4moles
Using ideal gas equation,
P V = n R T
Where, P is the pressure,
V is the volume,
n is the number of moles,
R is the gas constant, and T is the temperature
We have, 1 bar = 0.986923 atm
Substituting the values,
V = nRT/P = (2.798 x 10-4moles x 0.08205 L atm mol K x 298 K)/ 0.986923 atm = 0.0069L
Volume of O2 produced = 0.0069L
Answer:
Removing O₂, means removing one of the reactants and the system would counteract this effect by producing more O₂, thereby shifting the equilibrium position to the left and favouring the backward reaction.
Explanation:
The principle that explains how changes in temperature, Concentration and Pressure of reactants or products of a reaction at equilibrium affect the equilibrium position of the reaction is the Le Chatelier's principle.
The Principle explains that a system/process if a system/process which is at equilibrium is disturbed/perturbed/constrained by one or more changes (in concentration, pressure or temperature), the system would shift the equilibrium position to counteract the effects of this change.
Removing O₂, means removing one of the reactants (changing its concentration) and the system would counteract this effect by producing more O₂, thereby shifting the equilibrium position to the left and favouring the backward reaction.
Answer: -2.373 x 10^-24J/K(particles
Explanation: Entropy is defined as the degree of randomness of a system which is a function of the state of a system and depends on the number of the random microstates present.
The entropy change for a particle in a system depends on the initial and final states of a system and is given by Boltzmann equation as
S = k ln(W) .
where S =Entropy
K IS Boltzmann constant ==1.38 x 10 ^-23J/K
W is the number of microstates available to the system.
The change in entropy is given as
S2 -S1 = kln W2 - klnW1
dS = k ln (W2/W1)
where w1 and w2 are initial and final microstates
from the question, W2(final) = 0.842 x W1(initial), so:
= 1.38*10-23 ln (0.842)
=1.38*10-23 x -0.1719
= -2.373 x 10^-24J/K(particles)