According to the law of conservation of mass, what is the same on both sides of a balanced chemical equation?
A. the volume of the substances
B. the subscripts
C. the total mass of atoms
D. the coefficients
Answer:
A balanced equation demonstrates the conservation of mass by having the same number of each type of atom on both sides of the arrow.
Explanation:
Every chemical equation adheres to the law of conservation of mass, which states that matter cannot be created or destroyed. ... Use coefficients of products and reactants to balance the number of atoms of an element on both sides of a chemical equation.
Consider the balanced equation for the combustion of methane.
CH
4
+
2O
2
→
CO
2
+
2H
2
O
All balanced chemical equations must have the same number of each type of atom on both sides of the arrow.
In this equation, we have 1
C
atom, 4
H
atoms, and 4
O
atoms on each side of the arrow.
The number of atoms does not change, so the total mass of all the atoms is the same before and after the reaction. Mass is conserved.
Here is a video that discusses the importance of balancing a chemical equation.
Answer:
Molecular Weight
Explanation:
Chromium(III) Carbonate Cr2(CO3)3 Molecular Weight -- EndMemo.
The <u>Mole</u> is the SI unit that expresses the amount of substance.
Mole is defined as - The mole is the amount of substance containing the same number of entities as there are in the 12 grams of Carbon - 12.
Mole is denoted by using symbol mol.
Mole = 6.022 x 10²³ elementary entities.
These number of elementary entities in 1 mole is equal to or called as an Avogadro's number. Mole is equal to 6.022 x 10²³ because this number of entity is same as in exactly 12 g of carbon-12.
It is a very important SI unit of measured which is used by the chemists. Moles are used in measuring in small or tiny things such as atoms, molecules and the other tiny particles.
To learn more about the mole concept,
brainly.com/question/28498715
#SPJ4
Answer:
The answer to your question is: 65.9 g released of CO2
Explanation:
MW CO2 = 44 g
MW CuCO3 = 123.5 g
CO2 released = ?
CuCO3 = 185 g
CuCO3 ⇒ CO2 + CuO
123.5 ----------- 44g
185 g ----------- x
x = (185 x 44) / 123.5
x = 65.9 g released of CO2