1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
UNO [17]
3 years ago
11

Sixteen socks are put into pairs. how many pairs are there

Mathematics
2 answers:
GuDViN [60]3 years ago
7 0

if you have 16 socks then you will have 8 pairs of 2.

16 / 2 = 8

answer is 8

Liono4ka [1.6K]3 years ago
7 0

Answer:

16÷2=8pairs

Step-by-step explanation:

You might be interested in
Please Help!!!
DochEvi [55]

Sally earns per hour = $12

Sally works for in a week = 16 hours.

So, Sally earns in a week = 12\times16=192

Sally can save money each week= 20% of 192

\frac{20}{100}\times192=38.40

A. How much does she earn each week ? Sally earns $192 in a week.

B. How much money will she save each week? Sally will save $38.40 each week.

C. How much money will she save each month (assume there are 4.3 weeks in a month)

Savings of 1 week = $ 38.40

Savings of 4.3 weeks = 4.3\times38.40=165.12

Hence, she will save $165.12 in a month.

D. How many months will it take her to save the money?

Total money needed = $1800

Number of months needed to collect this amount =

\frac{1800}{165.12}=10.90

Hence, it will take 11 months approx to save $1800.



5 0
3 years ago
10 points and brainliest. solve by elimination
evablogger [386]

Answer:

(3,-7) I think.

Step-by-step explanation:

3 0
3 years ago
Square root of 2tanxcosx-tanx=0
kobusy [5.1K]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3242555

——————————

Solve the trigonometric equation:

\mathsf{\sqrt{2\,tan\,x\,cos\,x}-tan\,x=0}\\\\ \mathsf{\sqrt{2\cdot \dfrac{sin\,x}{cos\,x}\cdot cos\,x}-tan\,x=0}\\\\\\ \mathsf{\sqrt{2\cdot sin\,x}=tan\,x\qquad\quad(i)}


Restriction for the solution:

\left\{ \begin{array}{l} \mathsf{sin\,x\ge 0}\\\\ \mathsf{tan\,x\ge 0} \end{array} \right.


Square both sides of  (i):

\mathsf{(\sqrt{2\cdot sin\,x})^2=(tan\,x)^2}\\\\ \mathsf{2\cdot sin\,x=tan^2\,x}\\\\ \mathsf{2\cdot sin\,x-tan^2\,x=0}\\\\ \mathsf{\dfrac{2\cdot sin\,x\cdot cos^2\,x}{cos^2\,x}-\dfrac{sin^2\,x}{cos^2\,x}=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left(2\,cos^2\,x-sin\,x \right )=0\qquad\quad but~~cos^2 x=1-sin^2 x}

\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}


Let

\mathsf{sin\,x=t\qquad (0\le t


So the equation becomes

\mathsf{t\cdot (2t^2+t-2)=0\qquad\quad (ii)}\\\\ \begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{2t^2+t-2=0} \end{array}


Solving the quadratic equation:

\mathsf{2t^2+t-2=0}\quad\longrightarrow\quad\left\{ \begin{array}{l} \mathsf{a=2}\\ \mathsf{b=1}\\ \mathsf{c=-2} \end{array} \right.


\mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=1^2-4\cdot 2\cdot (-2)}\\\\ \mathsf{\Delta=1+16}\\\\ \mathsf{\Delta=17}


\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{2\cdot 2}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{4}}\\\\\\ \begin{array}{rcl} \mathsf{t=\dfrac{-1+\sqrt{17}}{4}}&\textsf{ or }&\mathsf{t=\dfrac{-1-\sqrt{17}}{4}} \end{array}


You can discard the negative value for  t. So the solution for  (ii)  is

\begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{t=\dfrac{\sqrt{17}-1}{4}} \end{array}


Substitute back for  t = sin x.  Remember the restriction for  x:

\begin{array}{rcl} \mathsf{sin\,x=0}&\textsf{ or }&\mathsf{sin\,x=\dfrac{\sqrt{17}-1}{4}}\\\\ \mathsf{x=0+k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=arcsin\bigg(\dfrac{\sqrt{17}-1}{4}\bigg)+k\cdot 360^\circ}\\\\\\ \mathsf{x=k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=51.33^\circ +k\cdot 360^\circ}\quad\longleftarrow\quad\textsf{solution.} \end{array}

where  k  is an integer.


I hope this helps. =)

3 0
3 years ago
You have been hired by joe's gas stop to estimate a demand function for its regular gasoline sales. occordingly, you collect 50
Digiron [165]
(a) Sample correlation ==> -0.7916
(b) Standard Deviation for Quantity ==> 801.6816
(c) Standard Deviation for Price ==> 39.1660
(d) Relation to coefficient on Price ==> <span>−16.2028</span>
8 0
3 years ago
30 points: 5 star and best answer and thanks. you can leave answers in. A B C or D ty ty ty.
nalin [4]
1, B 2, C 3, C 4, C 5, a 6, b 7, b 8, C 9, a I think. Hoped this helps.
5 0
3 years ago
Read 2 more answers
Other questions:
  • Can you ever use a calculator to determine if a number is rational or irrational?
    5·1 answer
  • I NEED HELP! Here’s The Options
    8·2 answers
  • A customer buys 15.5 cheese pizzas which are $10.50 each. What is the total? Round it to the nearest hundredth.
    11·1 answer
  • HELLLLLLP!!!!
    12·1 answer
  • Pls help ill mark brainliest
    5·1 answer
  • A pyramid has a rectangular base. Find the width of a pyramid if the height is 10cm, the length is 6cm and the Volume is 80cm^3
    12·1 answer
  • please help me I would solve them myself but i have too much work and who ever solves is correctly I will give brainliest and if
    14·2 answers
  • Mr. Adamak earns a gross salary of $72,425. He
    8·1 answer
  • When this 3-digit number is rounded to the nearest ten, the sum of its digits is 16. The hundreds digit of this number is 8 and
    6·2 answers
  • Find the explicit of 3xy+x=y-6
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!