The choices can be found elsewhere and as follows:
a. mass-mass problems
<span>b. mass-volume problems </span>
<span>c. mass-particle problems </span>
<span>d. volume-volume problems
</span>
I believe the correct answer is option D. It is volume-volume problems that does not require the use of molar mass. <span> Here you are dealing with molarities and volumes to determine concentrations. Molar mass is not part of any calculations.</span>
Answer:
126000J
Explanation:
From the question given, we obtained the following information:
M = 1500g
C = 4.2J/g°C
ΔT = 20°C
Q =?
Q= MCΔT
Q = 1500 x 4.2 x 20 =
Q = 126000J
Answer:
A. Soaps react with ions in hard water to create a precipitate.
B. Soaps are both hydrophobic and hydrophilic.
D. Soaps should be weakly alkaline in solution.
Explanation:
A. Hard water contains <u>magnesium and calcium minerals</u> like calcium and magnesium carbonates, sulfates and bicarbonates. As soon as these minerals come in contact with soap their ions like Mg²⁺ & Ca²⁺ form precipitates.
B. Soap are both hydrophilic and hydrophobic. They reason why they exhibit both the properties is really important for their functionality. The hydrophobic part of soap makes interaction with oil/dust particles while the hydrophilic part makes interaction with water. When the cloth is rinsed the dirt/soap particles are removed from the dirty clothes thereby making them clean.
C. Soaps have alkaline pH i.e. more than 7 that is why they have bitter taste.
Answer:
Explanation:
The definition of acids and bases by Arrhenius Theory was modified and extended by Bronsted-Lowry.
Bronsted-Lowry defined acid as a molecule or ion which donates a proton while a base is a molecule or ions that accepts the proton. This definition can be extended to include acid -base titrations in non-aqueous solutions.
In this theory, the reaction of an acid with a base constitutes a transfer of a proton from the acid to the base.
From the given information:

From above:
We will see that HCN releases an H⁺ ion, thus it is a Bronsted-Lowry acid
accepts the H⁺ ion ,thus it is a Bronsted-Lowry base.
The formula of the reactant that acts as a proton donor is <u>HCN</u>
The formula of the reactant that acts as a proton acceptor is <u>H2O</u>