Answer: 55.52 *10^-6 C= 55.52 μC
Explanation: In order to solve this question we have to take into account the following expressions:
potential energy stired in a capacitor is given by:
U=Q^2/(2*C) where Q and C are the charge and capacitance of the capacitor.
then we have:
Q^2= 2*C*U=
C=εo*A/d where A and d are the area and separation of the parallel plates capacitor
Q^2=2*εo*A*U/d=2*8.85*10^-12*1.9*10^-5*11*10^3/(1.2*10^-3)=
=55.52 *10^-6C
Measuring spoons are used when measuring less than 1/4 cup
Answer:
The current will increase with reduction in the resistance.
Explanation:
Electrical resistance reduces the flow of electricity through a conductor just like friction reduces our speed. The higher the resistance the harder it will be for the current to flow and vice versa, hence, higher resistance produces a smaller current if the voltage is held constant. The voltage is the electrical drive.
Acceleration is a change in *speed* over time. In this case, the speed of the car increased by 90 km/hr in 6 s, giving it a rate of 90 km/hr/6s, or 15 km/hr/s. We’re asked for the acceleration in m/s^2, though, so we’ll need to do a few conversions to get our units straight.
There are 1000 m in 1 km, 60 min, or 60 * 60 = 3600 s in 1 hr, so we can change our rate to:
(15 x 1000)m/3600s/s, or (15 x 1000)m/3600 s^2
We can reduce this to:
(15 x 10)m/36 s^2 = 150 m/36 s^2
Which, dividing numerator and denominator by 36, gets us a final answer of roughly 4.17 m/s^2
Answer:2.517 J/K
Explanation:
Given
Reservoir 1 Temperature 
Reservoir 2 Temperature 
Let Q is the amount of heat Flows i.e. 
thus change in Entropy is given by 


