Answer:

Explanation:
Lets take h is height of cylinder immersed in the water
We know that for floating body

Where
density of cylinder
density of water
For both cylinder fluid is same also density of cylinders are also same
So




As Rene Descartes - french mathematician of Cartesian graphs - said "Cogito ergo sum". I think, therefore I am.
This can be adapted to I think therefore I am, I think ... as a "geeky joke".
<h2>
Answer:</h2>
D. (1m, 0.5m)
<h2>
Explanation:</h2>
The center of mass (or center of gravity) of a system of particles is the point where the weight acts when the individual particles are replaced by a single particle of equivalent mass. For the three masses, the coordinates of the center of mass C(x, y) is given by;
x = (m₁x₁ + m₂x₂ + m₃x₃) / M ----------------(i)
y = (m₁y₁ + m₂y₂ + m₃y₃) / M ----------------(ii)
Where;
M = sum of the masses
m₁ and x₁ = mass and position of first mass in the x direction.
m₂ and x₂ = mass and position of second mass in the x direction.
m₃ and x₃ = mass and position of third mass in the x direction.
y₁ , y₂ and y₃ = positions of the first, second and third masses respectively in the y direction.
From the question;
m₁ = 6kg
m₂ = 4kg
m₃ = 2kg
x₁ = 0m
x₂ = 3m
x₃ = 0m
y₁ = 0m
y₂ = 0m
y₃ = 3m
M = m₁ + m₂ + m₃ = 6 + 4 + 2 = 12kg
Substitute these values into equations (i) and (ii) as follows;
x = ((6x0) + (4x3) + (2x0)) / 12
x = 12 / 12
x = 1 m
y = (6x0) + (4x0) + (2x3)) / 12
y = 6 / 12
y = 0.5m
Therefore, the center of mass of the system is at (1m, 0.5m)
The density of the object is the ratio of its mass and volume. From the given dimensions above, we determine the volume through the equation,
V = L x W x H
Substituting,
V = (3 cm)(2 cm)(1 cm) = 6 cm³
From the idea presented above,
d = m/V
Substituting the known values,
d = (30 g)/ (6 cm³) = 5 g/cm³
ANSWER: 5 g/cm³
Answer:
what is the question I cannot click the
Explanation: