<span>We want to check how many intersections line A and B have, that is, we want to check how many common solutions do these equations have:
</span>
i) 2x + 2y = 8
ii) x + y = 4
<span>
use equation ii) to write y in terms of x as : y=4-x,
substitute y =4-x in equation i):
</span>2x + 2y = 8
2x + 2(4-x) = 8
<span>2x+8-2x=8
8=8
this is always true, which means the equations have infinitely many common solutions.
Answer: </span><span>There are infinitely many solutions.</span><span>
</span>
![\bf \textit{difference and sum of cubes} \\\\ a^3+b^3 = (a+b)(a^2-ab+b^2) ~\hfill a^3-b^3 = (a-b)(a^2+ab+b^2) \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \boxed{a^6+b^6}\implies a^{2\cdot 3}+b^{2\cdot 3}\implies (a^2)^3+(b^2)^3 \\[2em] [a^2+b^2] [(a^2)^2-a^2b^2+(b^2)^2]\implies \boxed{(a^2+b^2)(a^4-a^2b^2+b^4)}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bdifference%20and%20sum%20of%20cubes%7D%20%5C%5C%5C%5C%20a%5E3%2Bb%5E3%20%3D%20%28a%2Bb%29%28a%5E2-ab%2Bb%5E2%29%20~%5Chfill%20a%5E3-b%5E3%20%3D%20%28a-b%29%28a%5E2%2Bab%2Bb%5E2%29%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20%5Cboxed%7Ba%5E6%2Bb%5E6%7D%5Cimplies%20a%5E%7B2%5Ccdot%203%7D%2Bb%5E%7B2%5Ccdot%203%7D%5Cimplies%20%28a%5E2%29%5E3%2B%28b%5E2%29%5E3%20%5C%5C%5B2em%5D%20%5Ba%5E2%2Bb%5E2%5D%20%5B%28a%5E2%29%5E2-a%5E2b%5E2%2B%28b%5E2%29%5E2%5D%5Cimplies%20%5Cboxed%7B%28a%5E2%2Bb%5E2%29%28a%5E4-a%5E2b%5E2%2Bb%5E4%29%7D)
about the second one... well, is a "fait accompli" that using the pythagorean theorem, if x = 8 and y = 5, the hypotenuse must be √(8² + 5²) = √(89), which is neither of those choices.
5, 8, 13 are no dice, namely 5² + 8² ≠ 13
25, 64, 17 is are no dice too, because 25² + 17² ≠ 64²
however, 5,12 and 13 are indeed a pythagorean triple
also is 39, 80, 89.
when looking for a pythagorean triple, recall that c² = a² + b².
so the longest leg is the sum of the square of the small ones.
so what you'd do is, check the small legs, square them, add them up, if they're indeed a pythagorean triple, they "must" add up to the longest leg.
Answer: 
Step-by-step explanation:
You need to use the following formula that is used to find the area of a trapezoid:

Where "M"and "m" are the bases of the trapezoid and "h" is the height of the trapezoid.
Based on the information given in the exercise, you can identify that:

Knowing these values, you can substitute them into the formula:

Finally, you must evaluate in order to find its area. This is:

Answer:
when 926 is divide by 38 it's remainder is 14.
Answer: A C E G I = 1 2 3 7 8
Step-by-step explanation: A C E G I K M O Q S U W Y AA AC AE AG AI AK AO AQ AU AW AY BA