I would say if you would add colors it would be the best
Answer:
0.628 M.
Explanation:
In order to solve this problem we need to keep in mind the<em> definition of molarity</em>:
- Molarity = moles / liters
We are given both the <em>number of moles and the volume of solution</em>, meaning we can now proceed to <u>calculate the molarity</u>:
- Molarity = 0.220 mol / 0.350 L
Answer:
Solution A that will form a precipitate with Ksp = 2.3 x 10−4
Explanation:
Li₃PO₄ ⇄ 3 Li⁺(aq) + PO₄³⁻(aq)
3S S
Where S = Solubility(mole/lit) and Ksp = Solubility product
⇒ Ksp = (3S)³ x (S)
⇒ 27S⁴ = 2.3x10−4
⇒ S = 0.05 mol/lit
Concentration of Li₃PO₄ precipitate = 0.05
<u>Solution A </u>
0.500 lit of a 0.3 molar LiNO₃ contains 0.5 x 0.3 = 0.15 mole
0.4 lit of a 0.2 molar Na₃PO₄ contains = 3 x 0.4 x 0.2 = 0.24 mole
3 LiNO₃ + Na₃PO₄ → 3 NaNO₃ + Li₃PO₄
(Mole/Stoichiometry)

= 0.05 = 0.24
Since from (Mole/Stoichiometry) ratio we can conclude that LiNO₃ is limiting reagent.
So concentration of Li₃PO₄ is equal to 0.05.
Answer:
Soil is a mix of inorganic minerals, water, air, organic matter from dead and decaying plants and animals, and an incredible array of living organisms, ranging in size from microscopic bacteria and fungi to earthworms, moles, and shrews.
Explanation:
hope this helps.
please give brainliest...
Heat required to raise the temperature = 159.505 J
<h3>Further explanation</h3>
Given
c = specific heat of Beryllium = 1.825 J/g C
m = mass = 2.3 g
Δt = Temperature difference : 60 - 22 = 38 °C
Required
Heat required
Solution
Heat can be formulated
Q = m.c.Δt
Input the value :
Q = 2.3 x 1.825 x 38
Q = 159.505 J