From the equation of the reaction; for every 1 mole of copper, the reaction uses 2 moles of silver nitrate.
<h3>What is a reaction?</h3>
A chemical reaction involves the transformation of one chemical specie into another. The reaction is not shown here hence the question is incomplete.
However, the reaction should be of the sort; Cu + 2AgNO3 ---> Cu(NO3)2 + Cu. Thus, for every 1 mole of copper, the reaction uses 2 moles of silver nitrate.
Learn more about chemical reaction: brainly.com/question/6876669
Answer:
Question 1 is 21.0g
Explanation:
50 x 4.18 x 3.1 / 0.444 / 69.6= 21.0
Answer:
The specific heat of the metal is 2.09899 J/g℃.
Explanation:
Given,
For Metal sample,
mass = 13 grams
T = 73°C
For Water sample,
mass = 60 grams
T = 22°C.
When the metal sample and water sample are mixed,
The addition of metal increases the temperature of the water, as the metal is at higher temperature, and the addition of water decreases the temperature of metal. Therefore, heat lost by metal is equal to the heat gained by water.
Since, heat lost by metal is equal to the heat gained by water,
Qlost = Qgain
However,
Q = (mass) (ΔT) (Cp)
(mass) (ΔT) (Cp) = (mass) (ΔT) (Cp)
After mixing both samples, their temperature changes to 27°C.
It implies that
, water sample temperature changed from 22°C to 27°C and metal sample temperature changed from 73°C to 27°C.
Since, Specific heat of water = 4.184 J/g°C
Let Cp be the specific heat of the metal.
Substituting values,
(13)(73°C - 27°C)(Cp) = (60)(27°C - 22℃)(4.184)
By solving, we get Cp =
Therefore, specific heat of the metal sample is 2.09899 J/g℃.
If ice is warmed and becomes a liquid, the process is endothermic.
The process requires heat in order to proceed. If ice stays in a very cold place, it will not melt unless it's heated. If ice is placed outside where it melts on its own, it gets the heat from the surroundings.
When a specific amount of energy is emitted when excited electrons in an atom in a sample of an element return to the ground state, this emitted energy can
<span>be used to determine the "identity of the element".</span>