<span>Reduce energy use.
Change the way you think about transportation. Walk or bike whenever possible.
Insulate your home. Insulate yourself and your home.
Make every drop count.
</span>Cool wash and hang to dry.
<span>Switch to "green power.
</span>Recycle.
deceleration or rėtardation i’m pretty sure (it won’t let me say the second word but it’s correct)
That would be a the first law of newton's laws of motion because it stops from an external force
Answer:
The time taken is 
Explanation:
From the question we are told that
The length of steel the wire is 
The length of the copper wire is 
The diameter of the wire is 
The tension is 
The time taken by the transverse wave to travel the length of the two wire is mathematically represented as

Where
is the time taken to transverse the steel wire which is mathematically represented as
![t_s = l_1 * [ \sqrt{ \frac{\rho * \pi * d^2 }{ 4 * T} } ]](https://tex.z-dn.net/?f=t_s%20%20%3D%20l_1%20%2A%20%20%5B%20%5Csqrt%7B%20%5Cfrac%7B%5Crho%20%2A%20%5Cpi%20%2A%20%20d%5E2%20%7D%7B%204%20%2A%20%20T%7D%20%7D%20%5D)
here
is the density of steel with a value 
So
![t_s = 31 * [ \sqrt{ \frac{8920 * 3.142* (1*10^{-3})^2 }{ 4 * 122} } ]](https://tex.z-dn.net/?f=t_s%20%20%3D%2031%20%2A%20%20%5B%20%5Csqrt%7B%20%5Cfrac%7B8920%20%2A%203.142%2A%20%20%281%2A10%5E%7B-3%7D%29%5E2%20%7D%7B%204%20%2A%20%20122%7D%20%7D%20%5D)

And
is the time taken to transverse the copper wire which is mathematically represented as
![t_c = l_2 * [ \sqrt{ \frac{\rho_c * \pi * d^2 }{ 4 * T} } ]](https://tex.z-dn.net/?f=t_c%20%20%3D%20l_2%20%2A%20%20%5B%20%5Csqrt%7B%20%5Cfrac%7B%5Crho_c%20%2A%20%5Cpi%20%2A%20%20d%5E2%20%7D%7B%204%20%2A%20%20T%7D%20%7D%20%5D)
here
is the density of steel with a value 
So
![t_c = 17 * [ \sqrt{ \frac{7860 * 3.142* (1*10^{-3})^2 }{ 4 * 122} } ]](https://tex.z-dn.net/?f=t_c%20%20%3D%2017%20%2A%20%20%5B%20%5Csqrt%7B%20%5Cfrac%7B7860%20%2A%203.142%2A%20%20%281%2A10%5E%7B-3%7D%29%5E2%20%7D%7B%204%20%2A%20%20122%7D%20%7D%20%5D)

So



For n resistors in series, the equivalent resistance is given by the sum of the resistances:

In this problem, we have three resistors, so the equivalent resistance of the load is the sum of the resistances of the three resistors: