the equation of the tangent line must be passed on a point A (a,b) and
perpendicular to the radius of the circle. <span>
I will take an example for a clear explanation:
let x² + y² = 4 is the equation of the circle,
its center is C(0,0). And we assume that the tangent line passes to the point
A(2.3).
</span>since the tangent passes to the A(2,3), the line must be perpendicular to the radius of the circle.
<span>Let's find the equation of the line parallel to the radius.</span>
<span>The line passes to the A(2,3) and C (0,0). y= ax+b is the standard form of the equation. AC(-2, -3) is a vector parallel to CM(x, y).</span>
det(AC, CM)= -2y +3x =0, is the equation of the line // to the radius.
let's find the equation of the line perpendicular to this previous line.
let M a point which lies on the line. so MA.AC=0 (scalar product),
it is (2-x, 3-y) . (-2, -3)= -4+4x + -9+3y=4x +3y -13=0 is the equation of tangent
Specific heat capacity= heat energy/mass×temperature rise
962°C - 20°C = 942K
Heat energy (Eh) = 239 × 1.55 × 942
Eh= 348963.9J
shc of Ag: 238.6 J/kg-K
m of Ag: 1.55kg
Answer:
0.280 s
Explanation:
I set it up as 5.22=(55)(0.0266)/x and then solved for x to be 2.80.
Distance/ Time which means Distance is on horizontal and time is on vertical
If two positive charges are near each other they will repel each other.