The split leap. I'm not a ballerina but I'm pretty sure
Answer:
1.5 hr
16.7
Explanation:
Zero apparent weight means there's no normal force.
Sum the forces in the centripetal direction.
∑F = ma
mg = mv²/r
v = √(gr)
v = √(7.4×10⁶ m × 10 m/s²)
v = 8602 m/s
The circumference of the equator is:
C = 2πr
C = 2π (7.4×10⁶ m)
C = 4.65×10⁷ m
So the period is:
T = C / v
T = (4.65×10⁷ m) / (8602 m/s)
T = 5405 s
T = 1.5 hr
The initial speed is:
v = C / T
v = (4.65×10⁷ m) / (25 h × 3600 s/h)
v = 517 m/s
The speed increases by a factor of:
8602 m/s / 517 m/s
16.7
I believe it is called or referred to as the "Jet Stream". During World War II, allied pilots encountered high speed winds in the upper air. They named those winds after the fastest planes they came up against: fighters equipped with jet engines! Jet stream winds in winter time can reach up to 300 MPH as well!
Answer:
s=vt2 just simplify all into metric units first
Answer:
the photons (quanta of light) collide with the electrons, these electrons have to overcome the threshold energy that is the energy of union with the metal, and the energy that remains is converted to kinetic energy.
K = E - Ф
Explanation:
The photoelectric effect is the emission of electrons from the surface of a metal.
This was correctly explained by Einstein, in his explanation the energy of the photons (quanta of light) collide with the electrons, these electrons have to overcome the threshold energy that is the energy of union with the metal, and the energy that remains is converted to kinetic energy.
E = hf
E = K + Ф
K = E - Ф
The energy of the photons is given by the Planck relation E = hf and according to Einstein the number of joints must be added
E = n hf
Therefore, depending on the value of this energy, the emitted electrons can have energy from zero onwards.