Step-by-step explanation:
Let us consider the task to find the angle between vectors ES and EJ (the first letters are taken to name the vectors).
\overrightarrow{ES} = (4;4) - (4; -3) = \overrightarrow{(0; 7)}
ES
=(4;4)−(4;−3)=
(0;7)
\overrightarrow{EJ} = (-5; -4) - (4; -3) = \overrightarrow{(-9; -1)}
EJ
=(−5;−4)−(4;−3)=
(−9;−1)
cos \alpha=\frac{\overrightarrow{ES}*\overrightarrow{EJ}}{|\overrightarrow{EJ}|*|\overrightarrow{ES}|}cosα=
∣
EJ
∣∗∣
ES
∣
ES
∗
EJ
cos(a) = (0*(-9)+7*(-1)) / (7*9.055) = -0.11043;
a = 96,34°
Solution: 96 degrees.
Answer: B) -2.24
Step-by-step explanation:
..........................
The matrix should be this:
<span>
![\left[\begin{array}{ccc}2&-3\\1&1\end{array}\right]](https://tex.z-dn.net/?f=%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%26-3%5C%5C1%261%5Cend%7Barray%7D%5Cright%5D%20)
</span>
28 times 3 first you do 8 times 3 than 2 times 8 then add them together