Here we have explain that the maximum possible electrons present in nitrogen valence shell is 8 whereas in phosphorous 12 valence electrons are present.
Although both nitrogen (N) and phosphorous (P) belongs to the same series there are several properties which are different between both the element. The number of electrons present in nitrogen is seven which are present in the -s and -p orbitals. The electronic configuration of nitrogen is 1s²2s²2p³. In which the outermost electrons are the valence electrons i.e. 5 valence electrons are present. The maximum orbitals are possible under the principal quantum number 2 are -s and -p orbitals. Now the maximum capacity of the p orbital to contain 6 electrons, as it is half filled in nitrogen another 3 electrons can be incorporated. Thus the maximum number of electrons can be present in nitrogen is 10 among which 8 is the valence electrons.
On the other hand there are 15 electrons in phosphorous the electronic configuration is 1s²2s²2p⁶3s²3p³. Now the principal quantum number 3 can have three orbitals -s, -p and -d. So another 13 electrons can be incorporated (3 in -p orbital and 10 in -d orbital) among which upto 12 electrons can be its valence electrons.
Answer: The product from the reduction reaction is
CH3-CH2-CH(CH3)-CH2-CH2OH
IUPAC name; 3- Methylpentan-1-ol
Explanation:
Since oxidation is simply the addition of oxygen to a compound and reduction is likewise the addition of hydrogen to a compound.
Therefore, hydrogen is added onto the carbon atom adjacent to oxygen in 3- methyl pentanal
CH3 CH2 CHCH3 CH2 CHO thereby -CHO( aldehyde functional group) are reduced to CH2OH ( Primary alcohol) which gives;
3-methylpenta-1-ol .
The structure of the product is:
CH3-CH2-CH(CH3)-CH2-CH2OH
Answer:
1. Solid phase.
Explanation:
The molecules in a solid are held in a definite pattern which is not true of a liquid or gas.