Knowing the ratio between atoms we can write an empirical formula:
<span>C4H6O </span>
<span>we compute the molar mass of this single formula: </span>
<span>4x12 + 6 x 1 + 16 x1 = 70 g / mol </span>
<span>Now, as we know the actual molar mas being 280 g/mol, we divide this number by 70 and we get the ratio between empirical formula and molecular actual formula: </span>
<span>280 / 70 = 4 </span>
<span>This means that actual molecular formula is: </span>
<span>(C4H6O)4 or </span>
<span>C16H24O4 </span>
The model that should show the corresct representation of xenon gas is one in which the gas molecules are isolated and monoatomic.
<h3>What is a noble gas?</h3>
A noble gas is a member of group 18 of the periodic table. Noble gases are known not to interact with each other and occur as monoatomic particles.
The images are not shown here hence the question is incomplete. However, we do know that any of the models that show individual monoatomic particles is a representation of xenon gas.
Learn more about noble gas: brainly.com/question/2094768
Diphosphorus tetraiodide is a covalent compound.
It has low melting point as compared to ionic compounds
It is a rare compound where the oxidation state of Phosphorous is +2.
It is also termed as subhalide of phosphorous.