Answer:
The correct answer is 4.58 grams.
Explanation:
Based on the Faraday's law of electrolysis, at the time of electrolysis, the amount of deposited substance is directly equivalent to the concentration of the flow of charge all through the solution. If current, I, is passed for time, t, seconds and w is the concentration of the substance deposited, then w is directly proportional to I*t or w = zIt (Here z refers to the electrochemical equivalent or the amount deposited when 1 C is passed).
For the reaction, n * 96500 C = molar mass
1C = molar mass/n*96500 = Equivalent wt / 96500
w = Equivalent wt / 96500 * I * t
In the given reaction,
Pb + PbO2 + 2HSO4- + 2H+ → 2PbSO4 + 2H2O, n = 2, the current or I drawn is 350 A, for time, t 12.2 seconds.
Now putting the values in the equation we get,
w = 207.19 / 2 * 96500 * 350 * 12.2 ( The molecular weight of Pb is 207.19 and the equivalent weight of Pb is 207.19 / 2)
w = 4.58 gm.
Answer:
Pb2+ (aq) & 2Br- (aq) --> PbBr2 (s).
Explanation:
Equation of the reaction:
Pb(C2H32O2)2 (aq) + 2 NH4Br (aq) --> 2NH4C2H3O2 (aq) + PbBr2 (s)
Ionic equation:
Pb+2(aq) + 2(C2H3O2)-1 (aq) + 2(NH4+) (aq) + 2Br-1 (aq) --> 2(NH4+) (aq) + 2(C2H3O2-) (aq) + PbBr2 (s)
2(NH4)+1(aq) & 2(C2H3O2)-1 (aq) cancel out from both sides, you are left with the net ionic equation :
Pb2+ (aq) & 2Br- (aq) --> PbBr2 (s).
Answer:
Lithium
Explanation:
The answer is Lithium because the Alkali metals family is in the group 1A and the element neon is in the second period. If you look at the periodic table group 1A and the second period connects at the element Lithium.
The answer is False. Hope this helps!!!