Answer:
The wavelength of the line in the emission line spectrum of hydrogen caused by the transition of the electron for the given energy levels is 
Explanation:
Given :
The energy E of the electron in a hydrogen atom can be calculated from the Bohr formula:

= Rydberg energy
n = principal quantum number of the orbital
Energy of 11th orbit = 

Energy of 10th orbit = 

Energy difference between both the levels will corresponds to the energy of the wavelength of the line which can be calculated by using Planck's equation.


(Planck's' equation)


The wavelength of the line in the emission line spectrum of hydrogen caused by the transition of the electron for the given energy levels is 
After 25 days, it remains radon 5.9x10^5 atoms.
Half-life is the time required for a quantity (in this example number of radioactive radon) to reduce to half its initial value.
N(Ra) = 5.7×10^7; initial number of radon atoms
t1/2(Ra) = 3.8 days; the half-life of the radon is 3.8 days
n = 25 days / 3.8 days
n = 6.58; number of half-lifes of radon
N1(Ra) = N(Ra) x (1/2)^n
N1(Ra) = 5.7×10^7 x (1/2)^6.58
N1(Ra) = 5.9x10^5; number of radon atoms after 25 days
The half-life is independent of initial concentration (size of the sample).
More about half-life: brainly.com/question/1160651
#SPJ4
You have to find the stoichiometric ratio between AlCl₃ and BaCl₂. The common element between them is Cl. So, the ratio of Cl in BaCl₂ to AlCl₃ is 2/3. The molar mass of AlCl₃ is 133.34 g/mol. The solution is as follows:
Mass of AlCl₃ = (6 mol BaCl₂)(2 mol Cl/1 mol BaCl₂)(1 mol AlCl₃/3 mol Cl)(133.34 g/mol) = 533.36 g AlCl₃
Answer:
Kc = Kc = 8.0 * 10^9
Kp = 5.5 *10^5
Explanation:
Step 1: Data given
Temperature = 25.0 °C
Number of moles Fe = 1.0 moles
Number of moles O2 = 1.0 * 10^-3 moles
Number of moles Fe2O3 = 2.0 moles
Volume = 2.0 L
Step 2: The balanced equation
4Fe(s) + 3O2(g) ⇌ 2Fe2O3(s)
Step 3: Calculate molarity
Molarity = moles / volume
[Fe] = 1.0 moles / 2.0 L
[Fe] = 0.5 M
[O2] = 0.001 moles / 2.0 L
[O2] = 0.0005 M
[Fe2O3] = 2.0 moles / 2.0 L
[Fe2O3] = 1.0 M
Step 4: Calculate Kc
Kc =1/ [O2]³
Kc = 1/0,.000000000125
Kc = 8.0 * 10^9
Step 5: Calculate Kp
Kp = Kc*(R*T)^Δn
⇒with Kc = 8.0*10^9
⇒with R = 0.08206 L*atm /mol*K
⇒with T = 298 K
⇒with Δn = -3
Kp = 8.10^9 *(0.08206 * 298)^-3
Kp = 5.5 *10^5