We have all the charges for q1, q2, and q3.
Since k = 8.988x10^2, and N=m^2/c^2
F(1) = F (2on1) + F (3on1)
F(2on1) = k |q1 q2| / r(the distance between the two)^2
k^ | 3x10^-6 x -5 x 10^-6 | / (.2m)^2
F(2on1) = 3.37 N
Since F1 is 7N,
F(1) = F (2on1) + F (3on1)
7N = 3.37 N + F (3on1)
Since it wil be going in the negative direction,
-7N = 3.37 N + F (3on1)
F(3on1) = -10.37N
F(3on1) = k |q1 q3| / r(the distance between the two)^2
r^2 x F(3on1) = k |q1 q3|
r = sqrt of k |q1 q3| / F(3on1)
= .144 m (distance between q1 and q3)
0 - .144m
So it's located in -.144m
Thank you for posting your question. I hope that this answer helped you. Let me know if you need more help.
Answer:
produce electronics
Explanation:
The uses of Germanium are recorded beneath: Germanium's principle use is to deliver strong state hardware, semiconductors and fiber optic frameworks. As a phosphor in fluorescent lights.
plastics, Styrofoam hOPE THIS HELPS
Answer:
Same direction: t=234s; d=6.175Km
Opposite direction: t=27.53s; d=0.73Km
Explanation:
If the automobile and the train are traveling in the same direction, then the automobile speed relative to the train will be
(<em>the train must see the car advancing at a lower speed</em>), where
is the speed of the automobile and
the speed of the train.
So we have
.
So the train (<em>anyone in fact</em>) will watch the automobile trying to cover the lenght of the train L at that relative speed. The time required to do this will be:

And in that time the car would have traveled (<em>relative to the ground</em>):

If they are traveling in opposite directions, <u>we have to do all the same</u> but using
(<em>the train must see the car advancing at a faster speed</em>), so repeating the process:


