Answer:
0.3817 N
Explanation:
Remark
One thing is certain: the ball has a mass of 101 grams wherever it is in the universe. That is not true of the force. The force on the moon is a whole lot less than it is on earth, and maybe planet x as well.
Givens
m = 101 g
vi = 0 That's what at rest means.
t = 2.91 s
d = 16 m
F= ?
Formulas
d = vi*t + 1/2*a * t^2
Force = m * a
Solution
16 = 0 + 1/2 a * 2.91^2
16 = 4.234 a Divide by 4.234
16/4.234 = a
a = 3.779
F = m * a
a = 3.779
m = 101 g = 1 kg / 1000 grams
m = 0.101 kg
F = 0.101 * 3.779
F = 0.3817N
Answer:
0.786 Hz, 1.572 Hz, 2.358 Hz, 3.144 Hz
Explanation:
The fundamental frequency of a standing wave on a string is given by

where
L is the length of the string
T is the tension in the string
is the mass per unit length
For the string in the problem,
L = 30.0 m

T = 20.0 N
Substituting into the equation, we find the fundamental frequency:

The next frequencies (harmonics) are given by

with n being an integer number and f being the fundamental frequency.
So we get:



Answer: [B]: The letter, "<em /> I " ; for current; in units of "Amps" .
__________________________________________________
The X-axis of the H-R Diagram indicates the star's surface temperature in degrees Kelvin. The Y-axis, on the other hand, indicates luminosity, or brightness.
Main sequence refers to a roughly diagonal, slightly S-curved line stretching between the upper-left and lower-right corners on which main sequence stars chart. They maintain a predictable relationship between luminosity and temperature: the brighter, the hotter. The upper-right quadrant of the H-R diagram is home to newly discovered red giants while the lower-left quadrant of the H-R Diagram belongs almost exclusively to white dwarfs.
Answer:
load (l)=400N
Effort(E)=50N
mechanical advantage (MA)= load ÷Effort
(ma)=400÷50
(ma)=8
Explanation:
I copy pasted from the answer from the same question. Remember to first check if ur question is there