With the blocking of activation of clotting factors, the rate of conversion of fibrinogen to fibrin will decrease to a huge extent and this will prevent the clot formation.
Option A
<h3><u>Explanation:</u></h3>
The process of stopping of flow of blood through any wound by formation of a clot is known as blood clotting. The clot in blood is formed by conversion of the fibrinogen protein into its polymer form fibrin which forms a meshwork.
The conversion of fibrinogen to fibrin requires a lot of enzymes and factors present which is required one by one, known as the Cascade theory. Total of 13 factors are required, where there are prothrombin, thromboplastin, and different other factors. Inactivation of any of the 13 factors will lead to less conversion of fibrinogen to fibrin, thereby the rate of conversion will highly decrease.
We know the equation
weight = mass × gravity
To work out the weight on the moon, we will need its mass, and the gravitational field strength of the moon.
Remember that your weight can change, but mass stays constant.
So using the information given about the earth weight, we can find the mass by substituting 100N for weight, and we know the gravity on earth is 10Nm*2 (Use the gravitational field strength provided by your school, I am assuming yours in 10Nm*2)
Therefore,
100N = mass × 10
mass= 100N/10
mass= 10 kg
Now, all we need are the moon's gravitational field strength and to apply this to the equation
weight = 10kg × (gravity on moon)
Answer:
The correct option is (d).
Explanation:
- The energy a particle has because of its charge and its position relative to another particle is called thermal energy.
- It is the energy that comes from heat. This is generated by the movement of the particles in an object.
- Thermal energy is the energy an object or system has due to the movement of particles within.
Hence, the correct option is (d).
This question is checking to see whether you understand the meaning
of "displacement".
Displacement is a vector:
-- Its magnitude (size) is the distance between the start-point and
the end-point, no matter what route might have been followed along
the way.
-- Its direction is the direction from the start-point to the end-point.
Talking about the Earth's orbit around the sun, we can forget about
the direction of the displacement, and just talk about its magnitude
(size).
If we pretend that the sun is not moving and dragging the whole
solar system along with it, then what do we see the Earth doing
in one year ?
We mark the place where the Earth is at the stroke of midnight
on New Year's Eve. Then we watch it as it swings around through
this gigantic orbit, all the way around the sun, and in a year, it's back
to the same point that we marked !
So what's the magnitude of the displacement in exactly one year ?
It's the distance between the start-point and the end-point. But the
Earth came back to the same place it started from, so there's no
separation at all between the start-point and the end-point.
The Earth covered a huge distance in that year, but the displacement
is zero.
The answer to it is the letter A