Answer:
How do you describe the solution set to a system of linear inequalities?
Step-by-step explanation:
The solutions of a system of linear inequalities are all the ordered pairs that make all the inequalities in the system true.
The correct order would be:
5/64 x 3, 1/16 x 3, 3/32 x 4, 11/64 x 4, 7/16 x 3, 3/4 x 2, 3/8 x 4, 1 7/8 x 4, 2.25 x 2, 1.5 x 4, 3 3/8 x 3, 3.75 x 3
First we have to take all of the numbers and do the multiplication. It's often easiest to turn them in to decimals so that you have a common form.
3/32 x 4 = 3/8 = .375
3/4 x 2 = 3/2 = 1.5
1 7/8 x 4 = 15/4 = 3.75
2.25 x 2 = 4.5
1.5 x 4 = 6
3/8 x 4 = 3/2 = 1.5
5/64 x 3 = 5/32 = .156
3.75 x 3 = 11.25
1/16 x 3 = 3/16 = .1875
7/16 x 3 = 21/16 = 1.31
3 3/8 x 3 = 81/8 = 10.125
11/64 x 4 = 11/16 = .687
Now we can use those to put in order.
5/64 x 3 = 5/32 = .156
1/16 x 3 = 3/16 = .1875
3/32 x 4 = 3/8 = .375
11/64 x 4 = 11/16 = .687
7/16 x 3 = 21/16 = 1.31
3/4 x 2 = 3/2 = 1.5
3/8 x 4 = 3/2 = 1.5
1 7/8 x 4 = 15/4 = 3.75
2.25 x 2 = 4.5
1.5 x 4 = 6
3 3/8 x 3 = 81/8 = 10.125
3.75 x 3 = 11.25
Which if you are looking for without the extra terms, you can check the answer at the top.
Answer:the 57th term is 78
Step-by-step explanation:
The sequence is an arithmetic sequence. The formula for determining the nth term of an arithmetic sequence is expressed as
Tn = a + (n - 1)d
Where
a represents the first term of the sequence.
d represents the common difference.
n represents the number of terms in the sequence.
From the information given,
a = - 6
d =3/2
n = 57
We want to determine the value if the 57th term, T57. Therefore,
T57 = - 6 + (57 - 1) ×3/2
T57 = - 6 + 56 × 3/2 = - 6 + 84
T57 = 78
Answer:
-77.625
Step-by-step explanation: